
 

 

The University of Reading 

 

 

 

 

 

 

 

 

Multi-Finger Manipulation Physics for Haptic 

Rendering 

 

 

 

 

 

 

 

Nic Melder 

 

 

January 2011 

 

 

 

Submitted for the degree of PhD in Cybernetics 

 

 

 

Department of Cybernetics, School of Systems Engineering, 

The University of Reading 



 

 

Declaration 

I confirm that this is my own work and the use of all material from other sources has 

been properly and fully acknowledged. 

 

 

 

 

Nic Melder 

10 January 2011 



 

 

Acknowledgements 

I would like to express my gratitude to Professor William Harwin for his patient 

guidance, intense criticism and deep insight into the discussions that have formed the 

basis of this thesis. 

 

I would also like to express my gratitude to Dr William Browne and his wife Lydia, 

Dr Rui Louriero and his wife Sylvia and Dr Max Bingham for their support (and more 

importantly their spare rooms) throughout the years whilst I was writing this thesis. 

 

Finally, I would like to thank the EPSRC for their funding of the “Haptic cues in 

multi-point interactions with virtual and remote objects” project which made this 

research possible, 



 

 

Abstract 

Computer haptics has the potential to greatly enhance the way that humans interact 

with computers especially when a 3D representation of the data is possible.  However, 

the majority of 3D haptic systems in use are single point of contact systems where the 

user interacts through a stylus.  By using multiple fingers and a reasonable physics 

model of the world, interaction within this virtual world can be made more intuitive as 

the user can now reach into the world and directly manipulate it instead of just 

prodding and poking it.  In this thesis, methods are described that allow a virtual 3D 

object to be manipulated with multiple contact points.  This includes lifting an object 

from a surface, rotating and moving it in free space, and placing it back down on a 

surface.  The Friction Cone Algorithm and the Residual Force and Torque Algorithms 

are presented that allow for this type of manipulation.   

 

The Friction Cone Algorithm is a mechanism that allows an arbitrarily complex 

friction model to be simulated on a variety of different 3D object representations 

including polygon meshes, parametric objects, NURBS surfaces and CSG trees.  The 

Residual Force and Torque Algorithms are able to convert the residual forces and 

torques of an object into a translational and rotational component that can be used to 

reposition and reorient the object.  A method to allow object rotation between contact 

points is also given as well as a method to calibrate multiple haptic devices to the 

same co-ordinate frame.  The software structure of the implemented multi-point 

haptic system is described including the multi-point haptic specific features that were 

incorporated as well as details of all the collision methods that were developed to 

allow for multi-object haptic collisions to be simulated.   

 

Due to the subjective nature of haptic rendering, a number of user evaluations are 

given to show the flexibility of the algorithms, the software system and the realism 

that was achieved.  The evaluations include user observations whilst using the system 

as well as the results of psychophysical experiments that were conducted using the 

developed algorithms.  These observations show that the system is both intuitive to 

use as well as being a good representation of the real world.  
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1 Thesis Aims and Overview 

The aim of this thesis is to explore the computational and engineering methods that 

allow multi-finger manipulation of virtual objects using haptic interfaces.  Since 

multi-finger manipulation is synonymous with grasping and holding it is desired that 

this is achieved in a way that is as close to the real world as possible.  This thesis 

describes the software methods that have been developed in order to achieve these 

goals.  

 

Chapter 2 provides the non-physics/engineering background to the field of haptics.  

The aim of this chapter is to introduce the reader to what haptics is, the physiological 

structures in the human body that make up our haptic system and the psychology of 

haptic perception.  The different types of haptic devices are also detailed along with 

their advantages and disadvantages as well as the different control methodologies that 

are used to control them.  The different types of grasp are introduced along with 

multi-finger haptics and how it differs from single finger haptics, the specific 

problems associated with it and the particular benefits of it.  Chapter 2 concludes with 

the current applications and limitations of haptics and the software components 

required to create a complete haptic system. 

 

Chapter 3 provides the technical background relevant to the field of haptic rendering 

and object manipulation.  The requirements for the successful implementation of a 

haptic enabled physical simulation are defined along with the current haptic rendering 

methods that already exist.  Since this thesis is concerned with object manipulation, 

different friction models and the current implementation of friction is also described.  

Similarly, the required physical properties of an object as well as the physics of 

grasping and manipulation are detailed.  Given that an important aspect of haptic 

rendering is the initial contact with an object, this chapter concludes with an 

explanation of the requirements for haptic collision detection as well as various 

techniques that optimise the determination of a collision.  

 

Chapters 4, 5 and 6 detail the new methods that have been developed to allow for the 

successful multi-finger manipulation of virtual objects.  Chapter 4 presents the 
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Friction Cone Algorithm, a novel way of modelling friction that has been developed 

specifically for haptic contacts and multi-contact haptic systems.  Since the Friction 

Cone Algorithm is not a friction model but a mechanism to allow different friction 

models to be haptically rendered, details are given how an arbitrarily complex friction 

model can be implemented.  The application of the Friction Cone Algorithm to 

various 3D object representations is also given.  This includes simple parametric 

objects, single NURBS surfaces and complex polygon meshes.  For polygon meshes, 

Face Directed Connection Graphs are developed that aids in the transition from one 

face to another across an edge.  How the Friction Cone Algorithm works on an edge is 

also described.  Analogous to graphical Phong shading and bump mapping, force 

shading and height mapping are also described as a means to smooth the feel of 

polygon edges as well as to simulate bumpy surfaces. 

 

Chapter 5 is concerned with multi-finger manipulation of virtual objects.  Due to the 

hardware available only single finger, two finger and three finger precision grips were 

possible; it was not possible to model any of the power grasps.  Since the hardware 

consisted of three discrete devices, a method to calibrate them all to the same work 

space is given.  This ensures that all the forces that are applied to a contacted object 

and rendered to the user via the haptic devices are presented in the correct direction.  

These forces can then be input to a suitable movement algorithm allowing the object 

to be manipulated.  The Residual Force / Torque Algorithms are presented which 

converts the applied force and torque generated by multiple points of contact into a 

new position and orientation for the object.  With only two points of contact, the 

simulation of torsional friction is desirable as this allows an object to be allowed to 

rotate between the fingers due to any simulated gravity.  This ‘soft finger contact 

modelling’ is presented and it is shown how it can be easily achieved when using the 

Friction Cone Algorithm.  To conclude, the different single finger grasps are also 

presented. 

 

Whereas Chapters 4 and 5 were concerned with direct haptic interactions, i.e. the 

virtual haptic endpoint interacting with a virtual object, Chapter 6 is concerned with 

how virtual manipulated objects should behave when they collide with other virtual 

objects.  The ability to pick up and place an object in a natural manner is essential for 

realistic object manipulation and the various methods to achieve this are explored 
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here.  The different types of object-object interactions are presented, although this 

chapter is only concerned with grasped object to non-moveable object interactions.  

There are two ways in which object-object interaction can be solved: force based or 

impulse based.  Due to the similarities to how the Friction Cone Algorithm works, 

only the force based solution is considered.  Picking up and placing a cube from / onto 

a plane is used to describe the different stages that the object will move through as it 

is placed on the surface and comes to rest or is lifted up and becomes suspended.  This 

chapter concludes with how a grasped object can be used to ‘feel’ another object and 

how this can be applied to allow a ‘haptic volumetric finger’ to replace the haptic 

interaction point. 

 

Chapter 7 details the software architecture of Phantom 3, the application that was 

created when developing the Friction Cone Algorithm and the Residual Force / 

Torque Algorithms.  The collisions detection algorithms developed are also detailed 

and some implementation details specific to haptic systems and, in particular, the 

Friction Cone Algorithm are also given.  

 

Since the research in this thesis has been in developing haptic rendering methods, 

when applying the algorithms with sensible parameters whilst using a suitable device, 

object manipulation will either feel natural or it won’t. This is not binary but is instead 

more of a scale of realism.  The realism of the system can be destroyed such as if the 

system exhibits a large inertial mass which will limit the maximum achievable 

acceleration, if the maximum velocity that can be achieved is too slow or if there is a 

soft representation of hard contact.  Chapter 8 presents both experimental results and 

subjective results to help to illustrate the robustness, realism and intuitiveness of the 

developed algorithms and system.  The results of two psychophysical perception tests, 

conducted by McKnight but using the presented algorithms, are also given.  A number 

of different applications were also developed throughout the development of the 

Friction Cone and Residual Force / Torque Algorithms and these are also presented 

here as an example of the flexibility of the developed system and algorithms. 

 

In conclusion, Chapter 9 discusses the developed algorithms, suggests areas where 

this research can be extended into, including a detailed explanation of how the 

Friction Cone Algorithm can be used to render constructive solid geometries, and also 
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describes some of the problems that occurred during the development of the 

Phantom3 application framework.  This chapter concludes with a short summary of 

the contributions that this thesis makes to the field of haptics as well as the advantages 

that the developed algorithms posses over previous haptic rendering algorithms. 
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2 Introduction to Haptics 

2.1 What is Haptics? 

Haptics is the study of human touch and interaction within an environment.  The 

Oxford English Dictionary defines haptics as: 

 

haptic, a. (and n.) – Of pertaining to, or relating to the sense of touch or 

tactile sensations.  b. Having a greater dependence on sensations of 

touch than on sight, esp. as a means of psychological orientation.  Also 

absol., a haptic person.  

 

So ‘haptical a., ‘haptically adv,; ‘haptics Psychol. and Linguistics, the 

study of touch and tactile sensations, esp. as a means of 

communication.’  [wwwOED05] 

 

The word haptic first appeared in the Billings medical dictionary in 1890 and the 

word haptics was first used by M. Dessoir in 1892.  It takes its etymology from the 

greek haptikos meaning able to come into contact with.  An alternative definition 

given by Gibson describes haptics as: 

 

‘The sensibility of the individual to the world adjacent to his body by the 

use of his body’ [Gibson66] 

 

Of the five human senses touch is unique in that it is both used to gather information 

about the environment as well as to directly affect it.  We use our sense of touch to 

learn about properties of an object, i.e. is it hot or cold, light or heavy, rough or 

smooth, as well as to directly manipulate the same object.  Information received by 

our haptic sense can be further classified into two categories: cutaneous stimulation 

and kinaesthetic stimulation.  Cutaneous stimulation is detected through the 

mechanoreceptors in the skin and is primarily a means of relaying surface details such 

as surface texture.  Temperature and pain are also measured through similar receptors.  

In contrast, kinaesthetic information is used to understand large scale details such as 
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object shape and weight and this is achieved via feedback from the muscular and 

skeletal system [Loomis86]. 

 

In the context of computer based haptics, haptics relates to the science, technology 

and applications associated with information acquisition and object manipulation 

through touch, in particular where that touch is mediated via some type of haptic 

interface.  An early use of haptic interfaces was Project Grope [Brooks90].  It was 

started in 1967 and was developed to assist in molecular docking applications for drug 

development. 

 

The purpose of this chapter is to introduce haptics, haptic interfaces and computer 

haptic systems to the reader.  It provides the background into the physiology and 

psychology of what haptics is and how it is perceived as well as the different types of 

hardware that has been developed in order to stimulate our haptic sense. Multi-finger 

haptics is introduced to show how it differs from single finger haptics, the current 

applications that computer haptic systems are used in and the necessary software 

components of a typical computer haptic system are also described.  This chapter 

concludes with the aims of the research presented in this thesis. 
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2.2 The Physiology of Touch 

2.2.1 The Cutaneous Haptic Sense 

 

Figure 2.1: A cross section through the skin showing the relative position of the different 

mechanoreceptors found in both the hairy and glabrous skin [wwwSkin07]. 

 

There are four different types of skin covering the human body: hairy skin, glabrous 

skin (skin without hair e.g. the finger tips), the mucous membranes (lining the inside 

of body orifices) and mucocutaneous skin (where the mucous membranes meet hairy 

skin, eg. the lips).  Each of these different skin types perform different functions and 

contain different types and densities of receptors embedded in them.  In relation to the 

study of haptics relating to virtual reality, it is the glabrous skin that is most used as it 

covers the fingertips and palm of the hand. 

 

There are four main types of mechanoreceptive nerve endings under the skin that 

facilitate tactile perception [Bolanowski88] [Cholewiak91].  These are the Meissner 

corpuscles, Merkel disks, Pacinian corpuscles and Ruffini endings.  They can be 

functionally categorised based upon their receptive fields (small (Type I) or large 

(Type II)) and their temporal properties (rapidly adapting (RA) and slowly adapting 

(SA)).  Rapidly adapting receptors have little or no static response activating only as 

long as the stimulus is in motion; they sense skin stretch and vibration.  In contrast to 

this, slowly adapting receptors are sensitive to dynamic stimuli but also exhibit a 
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response dependant upon the amplitude of any maintained skin indentation; they sense 

compressive stress and directional skin stretch.  It is believed that RAI receptors 

correspond to the Meissner corpuscles, RAII receptors to the Pacinian corpuscles, SAI 

receptors to the Merkel disks and SAII receptors to the Ruffini endings.   

Table 2.1 shows the different mechanoreceptors in the skin of the glabrous human 

hand [Kontarinis93] [Johansson82].  The frequency range within all types of 

mechanoreceptor increases rapidly with the amplitude of the stimulus. 

 

Receptor 

Type 

Receptive Field (mm
2
) 

(median) 

Frequency Range (most 

sensitive) 

Amplitude 

Threshold (µm) 

RAI 1-100 (12.6) 10-200Hz (20-40Hz) 30 

SAI 2-100 (11.0) 0.4-100Hz (7Hz) 15 

RAII 10-1000 (100) 40-800Hz (200-300Hz) 1 

SAII 10-500 (60) 7Hz 60 

 

Table 2.1: Properties of the mechanoreceptors in the glabrous human hand [Kontarinis93] 

[Johansson82].  The receptive field gives an approximation of the area around the receptor that will 

cause it to respond given an appropriate stimulus. This stimulus must be within the frequency range 

presented with the minimum amplitude as given by the amplitude threshold.  It should be noted that all 

the values stated are good approximations and not absolute values. 

 

Due to the different temporal and spatial responses of the various mechanoreceptors, 

different types of sensations are perceived through each or a combination of the 

mechanoreceptors.  The RAII receptors have a maximum response in the region of 

250Hz and hence serve to detect vibratory signals such as caused by stroking fine 

surfaces or when an object is initially contacted.  In contrast, the SAI receptors are 

active in the perception of patterns pressed into the skin such as Braille symbols 

[Phillips90].  These same receptors also appear to mediate the perception of roughness 

when surfaces have raised elements separated by about 1mm or more [Connor92]. 

 

Other cutaneous receptors include thermal receptors and pain receptors (nociceptors).  

Thermal sensation is mediated by separate receptors that detect heat and cold. Warm 

receptors begin firing when the skin temperature rises above 30 °C, and increase their 

firing rate as the temperature reaches 45 °C. Cold receptors fire when the skin 
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temperature drops below about 35 °C [Bear96]. Thermal receptors are particularly 

sensitive to changes in skin temperature and can detect a change of as little as 0.01ºC.  

However, the sensation of temperature is more than just the output of the thermal 

receptors and the perception of temperature is dealt with in the Hypothalamus where 

temperature control is also regulated. 

 

Nociception (the anatomy and physiology of pain) begins with two types of receptors 

in the skin, muscles and viscera. The mechanical nociceptor responds only to physical 

forces intense enough to produce tissue damage.  The polymodal nociceptors have a 

far more general response; they can be stimulated by strong pressure, heat or cold and 

by chemical stimulation.  Unlike the other cutaneous receptors, nociceptors have a 

greater responsiveness (ie. become more sensitive and reactive) to repeated 

stimulation. 

 

2.2.2 The Kinaesthetic Haptic Sense 

Kinaesthesis is our awareness of the activities of the muscles, tendons and joints of 

our bodies from which we are able to understand the relative position of our body.  

Unlike proprioception, which is the unconscious perception of movement and spatial 

orientation arising directly from the stimuli from nerves within the body, our 

kinaesthetic sense also includes a perceptual element that, combined with 

proprioception, informs us of the orientation of our limbs, how our joints are moving 

as well as the degree of muscle contraction and the amount of tension held in the 

tendons.  When interacting with an object, we use kinaesthesis in order to determine 

the overall shape, stiffness and mass of an object. 

 

Kinaesthesis consists of three distinct and different properties: the sense of position, 

the sense of movement and the sense of force.  This information is detected by 

proprioceptors located at the skeletal joints, the tendons and in the muscles as well as 

the inner ear and consist of four different receptor types: joint receptors, golgi tendon 

organs, muscle spindles and labyrinthine receptors. 

 

The joint receptors are located in the capsules of the joints and are believed to mediate 

the sense of movement since they provide feedback on the degree and rate of 
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angulation (change in position) of joint.  The muscle spindles and golgi tendon organs 

provide feedback directly related to the muscles.  The muscle spindles are located 

between the individual fibres throughout the muscle and are excited by the stretching 

of the neighbouring muscle fibres.  They also can determine the rate of increase in the 

muscle length (stretch).  The golgi tendon organs are located at the junction between 

the muscle and the tendon and they sense the tension applied to the tendon.  As the 

degree of tension is related to the degree of muscle contraction, the golgi tendon 

organs act as localised tension detectors, regulating muscle co-contraction which is an 

important aspect in fine motor control.  The labyrinthine receptors are associated with 

the inner ear and our sense of balance and are therefore not related to our haptic 

physiology. 

 

In addition to the above sensory equipment, kinaesthetic sensing may also be provided 

by the cutaneous mechanoreceptors due to skin stretch associated with the body’s 

motion. 

 

2.3 The Psychology and Perception of Touch 

 

Figure 2.2:  The Sensory Homunculus (latin for little man) is a representative model of the human 

body where the size of each part is proportional to the amount of ‘brain power’ that is dedicated to 

processing it [Penfield37].  It can be seen that the hands are much larger than the arms and this is due to 

the much higher density of receptors in the hands compared to the arms [wwwHomunc09]. 
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Although intimately related, sensation and perception play two complimentary but 

different roles in how we interpret our world.  Sensation refers to the process of 

sensing our environment through touch, taste, sight, sound, and smell.  Perception is 

the way we interpret these sensations and therefore make sense of everything around 

us. 

 

The raw data received from the haptic sensory system is processed in the brain in the 

somatosensory cortex, also known as the primary sensory cortex.  It has been shown 

that stimulation of different areas of the body affect different parts of the 

somatosensory cortex and in different amounts.  The sensory homunculus (see Figure 

2.2) shows how much of the human brain is devoted to processing the sensory data 

received from the body.  It can be seen that the hands and feet are comparatively large 

when compared with the rest of the body and this is due to a comparatively high 

receptor distribution density in these places.  It is not surprising that the hands are 

large since of all the parts of the body we use our hands to explore the world and the 

objects around us. 

 

2.3.1 Exploratory procedures 

When trying to determine a property of an object it is usual to adopt a particular 

pattern of movements e.g. stroking or a rubbing a surface (i.e. producing motion 

between the fingertip and a contacted surface) is a means to determine the roughness 

of an object.  Lederman and Klatzky [Lederman87] proposed a series of exploratory 

procedures which associates an action with an object property.  An exploratory 

procedure is typically used when trying to determine the associated property and it is 

the optimal method (in terms of speed and/or accuracy) to extract information about 

that property.  Table 2.2 and Figure 2.3 detail the main exploratory procedures 

described by Lederman and Klatzky.  

 

The exploratory procedures appear to maximise the appropriate sensory stimulation 

for the property under investigation. For example, to determine the temperature of an 

object, using static contact characteristically involves a large skin surface contact area.  

This larger area allows the production of a summated signal from the spatially 

distributed thermal receptors since more thermal receptors are likely to be affected 
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[Kenshalo84].  Similarly, texture perception is enhanced through lateral motion of the 

skin since this increases the response of the SA units [Johnson81].  It has also been 

proposed that weight can be judged by wielding an object because the motion 

provides information about the objects inertia, which is related to its mass and volume 

[Amazeen96]. 

 

Exploratory Procedure Action Property 

Lateral motion Rubbing fingers across a 

surface 

Roughness / texture 

Pressure Pressing into a surface Hardness / compliance 

Static contact Touching the surface in one 

spot 

Temperature 

Unsupported holding Holding an object away from 

any support 

Weight 

Enclosure Wrapping the hand around the 

object 

Global shape and volume 

Contour following Moving the fingers around the 

perimeter of the object 

Exact shape 

 

Table 2.2: The six main exploratory procedures that people use when trying to ascertain information 

about an object through touch alone. When performing an action on an object, many of these properties 

will also be discovered, e.g. the action of picking up a plastic bottle will give information about its 

hardness, weight, temperature as well as some aspects of its shape. 
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Lateral Motion (texture) Pressure (hardness) 

   

Contour following (global shape) Enclosure (global shape) 

   

Unsupported holding (weight)  Static contact (temperature) 

 

Figure 2.3:  The actions that are used when exploring an object.  Adapted from [Lederman87]. 

 

2.3.2 Sense Dominance, Illusions and Effects 

Although a large amount of the human brain is used for the processing of haptic 

sensory input, as humans we tend to rely most heavily on our visual sense for 
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information.  In fact, when there is a disparity between our visual sense and another 

sense, we will always assume that what we see is correct and it is our other sense that 

is at fault, hence the phrase “seeing is believing”.  In general, vision is the most 

dominant of our senses but there are situations where this is not the case.  Ernst et al 

[Bresciani05] [Ernst04] showed that audio was dominant when trying to determine the 

number of visual flashes or tactile taps if the subject was also presented with a 

different number of audio beeps simultaneously.  It has also been suggested that we 

use our haptic sense to calibrate our visual sense, especially when interacting in 

virtual environments [Rock64] although more recently this has come into dispute 

[Helbig08]. 

 

It is commonly believed that vision, hearing and touch are entirely separate 

‘perceptual modules’, each operating independently to provide us with unique 

information about the external world. Recent studies, however, have revealed that our 

perceptual experience is in fact shaped by a multitude of complex interactions 

between sensory modalities. A number of powerful multi-sensory illusions 

demonstrate that the senses are inextricably linked, and that our perception of visual, 

auditory or tactile events can be altered dramatically by information from other 

senses. 

 

When a sound is accompanied by a visual stimulus at another location, people tend to 

perceive this sound incorrectly at the same position as the visual stimulus.  This is 

known as the ventriloquism effect [Bertelson98].  Similarly, if a person sees a life 

sized rubber model of a hand where they would normally expect to see their real hand 

(which is hidden from view), the person will experience a touch on the rubber hand as 

though it were their own.  This occurs even if the artificial hand’s appearance greatly 

differs from the user’s real hand.  In fact, the illusion is so strong that it still works if 

the fake hand is non-human [Botvinick98].  In Botvinick’s experiment, 10 subjects 

were seated with their left arm resting on the table with a standing screen positioned 

to hide their arm.  A life sized rubber model arm was then placed on the table in front 

of the subjects and a light stroke of a paint brush was drawn on the real and fake arm 

simultaneously.  Questioning at the end of the experiment indicated that the subjects 

experienced an illusion in which they seemed to feel the touch not of the hidden brush 

but that of the viewed brush, as if the rubber hand had sensed the touch. 
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In these cases, auditory and tactile perception are substantially altered by the 

simultaneously available visual information. As a general rule, our sensations tend to 

be dominated by the modality that provides the most detailed and reliable information 

about the external world. Because vision provides highly accurate and detailed spatial 

information about three-dimensional properties of external objects, it is used to guide 

spatial judgements in other modalities as well, and can therefore influence (and 

sometimes distort) our spatial perception of auditory and tactile events. 

 

2.3.3 The Size-Weight and Grasp Span Weight Illusion 

In 1891, Charpentier [Charpentier1891] showed that when objects of identical mass 

but different volume are lifted, subjects consistently report that the smaller object is 

heavier. Even when the subjects are aware that the objects are of the same weight the 

illusion persists, and this has become known as the size-weight illusion. More 

recently, Flanagan & Bandomir [Flanagan00] found that a similar effect is seen when 

subjects pick up weights with different grasp spans. In this case, weights picked up 

with a narrow grip span are judged to be heavier than identical weights picked up with 

a wide grip.  The fundamental difference between these two illusions is that the size 

weight illusion is a visio-haptic illusion whereas the grasp span weight illusion can be 

a purely haptic illusion.  However, in Flanagan’s experiment, the subjects were able to 

see the weights they were picking up and so the results may have been attributed to 

the size weight illusion.  Davis et al [Davis01] repeated Flanagan’s experiments with 

blindfolded subjects and were able to conclude that the grasp-span weight illusion is 

in fact a purely haptic illusion. 

 

A number of theories have been given that try to explain why the size-weight illusion 

occurs but they all agree that it is not biased by other perceptual modalities.  This was 

shown to be the case by Davis [Davis01]. 

 

2.4 Haptics and Virtual Reality 

Although the term Virtual Reality (VR) is used by many different people with many 

meanings it is commonly used to refer to a collection of technologies that allow a user 
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to interact with a computer generated/simulated environment. In this context, 

probably the best definition of Virtual Reality is given by Aukstakalnis: 

 

“Virtual Reality is a way for humans to visualize, manipulate and 

interact with computers and extremely complex data” [Aukstakalnis92] 

 

Visualisation refers to the manner in which the complex data is presented to the user 

and may be visual, auditory, haptic or any other sensory stimulation.  Manipulation 

and interaction is also an important aspect of virtual reality as without the ability to 

interact and affect a change, a person can not feel that they are a part of the 

environment that they are in, instead they are merely an observer into a virtual world. 

 

Although the definition of VR given by Aukstakalnis may be the most correct, the lay 

population defines VR in a much looser sense to include the requirement of a 3D world.   

 

At present most 3D virtual worlds are visualised through the visual and audio 

perceptual modalities.  By adding haptics to the virtual world it becomes possible to 

engage another perceptual modality within the virtual environment.  This may be used 

to enhance the realism of a virtual simulated world and help immerse the user into this 

world or to aid the user in doing a task in a more natural manner.  Since one of the 

goals of virtual reality is not to recreate reality but to convince someone that they are 

in a reality [HullFish96], the addition of haptics becomes an essential component to 

this goal. 

 

It is also noteworthy that although the actual definition of virtual reality has not been 

defined absolutely, there are still some people that believe the term “Virtual Reality” 

to be an oxymoron! 

 

2.5 Haptic Interfaces 

A haptic interface (or haptic device) is a human computer interface that allows the 

sense of touch to be used as a means for interpreting information represented on a 

computer; it is a mechanism that stimulates our haptic senses.  As with our haptic 

senses, haptic devices can be divided into two categories: constrained motion devices 
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and tactile displays.  Constrained motion devices primarily stimulate our kinaesthetic 

sense whereas tactile displays stimulate our cutaneous sense.  Work done in creating 

haptic devices that appeal to both senses have been shown to improve the realism of 

simulated touch in a virtual environment [Wall00][Kontarinis95] although such 

advances have not yet been integrated into commercial systems and are not in wide 

usage. 
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Figure 2.4:  A taxonomy of haptic devices based primarily upon their construction. 
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2.5.1 Terminology and Definitions Used to Describe Haptic 

Interfaces 

There are a number of terms and properties that are used to describe the various 

important mechanical aspects of a haptic device.  These terms and their meanings are 

given here. 

 

2.5.1.1 Degrees of Freedom (DOF) 

The number of Degrees of Freedom of a haptic device (also referred to as the DOF of 

the device) describes how many axes the device can be moved and controlled in.  

Typically a device with 3 DOF will allow translational movement in 3 dimensions 

whereas a 6 DOF device will also include rotation about the 3 axis.  However, this is 

not necessarily the case as some robotic manipulators and exoskeleton devices may 

have a much higher DOF e.g. an exoskeleton glove may have 5 DOF, one for each 

finger. 

 

2.5.1.2 Grounded vs Un-Grounded 

When a device is said to be grounded it allows the user to perceive weight.  This 

usually requires that the device is attached to the ground or to an immoveable object.  

Because of this, the reactionary force created when a force is applied to the user is 

transferred via the attached object to the ground and this allows forces to be provided 

in any direction.  This enables the display of the dynamic properties of an object, e.g. 

mass and inertia as well as being able to physically impede the user when interacting 

with fixed virtual objects, e.g. a virtual wall.  Robotic manipulators and any desk 

based devices are all said to be grounded devices. 

 

An ungrounded device is usually attached to the body and is not capable of simulating 

many aspects of a virtual environment.  Dependant upon design, it is normally not 

possible to simulate mass or inertia, and fixed virtual objects cannot normally impede 

the user.  However, ungrounded devices are able to be used to determine the shape of 

objects and they do have a distinct number of advantages over grounded devices.  

Since they are not restricted to being attached to the ground, ungrounded devices can 

be used over a much larger area with no loss of fidelity and they are usually designed 
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to be multi-finger capable.  All wearable exoskeleton type haptic devices are 

inherently ungrounded e.g. the Immersion Cyber Grasp [wwwCGrasp05]. 

 

2.5.1.3 Backdriveable vs Non-Backdriveable 

For a haptic device to be backdriveable it means that when there is no power supplied 

to the device, it can still be moved freely without impeding the user.  Many of the 

cable based haptic devices are backdriveable whereas the larger robotic manipulators 

are non-backdriveable.  Backdriveablilty is important as it determines which kind of 

control strategy is required to use the device (see Section 2.5.3 for a description of the 

different control strategies).  Even though a system may be backdriveable the user 

will still feel the inherent inertia of the device.  This is described as the transparency 

of the device.   

 

2.5.1.4 Workspace 

The workspace is the three dimensional area in which the device can move and 

provide forces. This is primarily a characteristic of a grounded device. 

 

2.5.1.5 Peak Force / Torque and Continuous Force / Torque 

The peak force / torque is the maximum force / torque that the device can provide 

whilst the continuous force / torque is the maximum sustainable force / torque that can 

be applied.  In systems where the overall movement is at a relatively slow speed, e.g. 

less than 0.5ms
-1
, and a large proportion of the time is spent interacting with the 

virtual objects then the continuous force should be maximised.  However, in high 

speed systems such as a golf or cricket simulator or a virtual drum kit peak force will 

be more important. 

 

2.5.1.6 Sensor Resolution 

Sensor resolution describes the smallest change that can be detected by the sensor.  

This is important as it is related to the positional resolution of the device at its 

endpoint.  The end point resolution is also important for the control system as it is 

related to the maximum gain (and hence force) that can be generated at the endpoint. 
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2.5.1.7 Impedance 

Impedance is the resistive force of the device.  A device can be described as having 

low inherent impedance meaning that the force required to move the device is small.  

Backdriveablilty and impedance are closely related as it is the inherent impedance of 

the device that determines its backdriveablilty. 

 

2.5.1.8 Bandwidth 

The mechanical bandwidth of a device is the frequency that the force can be updated 

as felt by the user.  This is not to be confused with the update frequency of the control 

algorithms. 

 

2.5.2 Constrained Motion Haptic Devices 

Constrained motion devices appeal to the kinaesthetic sense in order to portray 

geometric information.  Through the use of a stylus, finger thimble or handle, the user 

is able to interact with a simulated environment.  Upon contact with a virtual object 

the device constrains the user such that the illusion of contact is conveyed. 

 

2.5.2.1 Cable Linkage Mechanisms 

 

 (a)  (b) 

Figure 2.5: Two haptic devices that employ cable linkage mechanisms.  a) the PHANToM from 

Sensable Technologies [wwwSensable05], employs metal cables to transmit the forces whereas b) the 

Freedom 6S, from MPD Technologies [wwwFreedom05], utilises Kevlar reinforced nylon threads. 
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Cable linkage mechanisms are lighter and less susceptible to friction and backlash 

then traditional linkage mechanisms used in robot manipulator technology and are 

fully backdriveable.  The kinematics of this type of device are well understood and 

devices can be built with a large workspace although, due to the mechanical 

properties of the linkages, bandwidth is limited.  The Phantom [Massie96] [Cohen99] 

is a robot arm style device where the user interacts via a stylus or thimble that 

employs a cable driven mechanism.  The Phantom is available in various 

configurations with different workspaces and comes in 3 and 6 degrees of freedom 

(DOF) versions.  It is possible to use either a stylus or finger thimble on many of the 

different models. 

 

2.5.2.2 Parallel Mechanisms 

(a)  (b) 

Figure 2.6: a) The DELTA haptic device with the 6DOF attachment and b), the smaller OMEGA 

haptic device.  Both these devices are produced by Force Dimension [wwwFD05]. 

 

Parallel mechanisms allow actuators to be kept at the base of the device leading to 

lower device inertia and greater strength and rigidity.  The main drawbacks are the 

high complexity of the dynamics model and the forward kinematics required if high 

DOF are required.  The DELTA Haptic Device [wwwFD05] offers either 3 or 6 active 

DOF and is capable of providing a large, continuous force over its entire workspace.  

The consumer level device, the Novint Falcon is based upon the parallel mechanism 

developed for the DELTA and OMEGA [wwwNovint07]. 
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Figure 2.7:  The NOVINT Falcon, the first consumer targeted 3DOF haptic device [wwwNovint07]. 

 

2.5.2.3 Tensed String Devices 

 

 

Figure 2.8: The SPIDAR 8 developed at the Tokyo Institute of Technology [wwwSPIDAR05]. 

 

Tensed string devices use thin cables or strings to transmit forces generated by remote 

actuators directly to the user.  They are capable of providing a large workspace and 

have low weight and small inertia but require a large number of strings to simulate a 

three dimensional force.  The SPIDAR (Space Interface Device for Artificial Reality) 

[Ishii94] interface is an example of a tensed string device with the SPIDAR 8 

[Walairacht01] being capable of exerting forces on 8 fingers simultaneously.  A major 

disadvantage of the SPIDAR 8 is the limitation of direction that a force can be 

applied, which is caused by the configuration of the strings. However, this is a 

limitation of the SPIDAR 8 and not of the other SPIDAR devices. The representation 
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of hard contact can also be poor in many tensed string devices although they do have 

the distinct advantage of being usable in large VR systems (such as a CAVE) without 

obscuring the projected images.  The SPIDAR G (G for Grip) replaces the finger 

gimbals with a spherical grip that the user is able to manipulate with 6 DOF [Kim03]. 

 

 

Figure 2.9: Two SPIDAR Gs setup for use in a bi manual configuration.  This configuration is referred 

to as the SPIDAR G & G [Murayama04]. 

 

2.5.2.4 Robotic Manipulators 

 

Figure 2.10: The Haptic Master produced by FCS [wwwFCS05].  Because of its size a force sensor is 

embedded at the endpoint that controls the direction of movement whilst in freespace. 

 

Robotic manipulator arms, based on joint position servo loops, are large workspace 

devices that usually have 3-6 degrees of freedom (DOF) in different configurations.  

Due to their size and construction they normally use admittance control allowing for 

the illusion of great rigidity in virtual objects whilst having difficulty in portraying 

virtual free space.  Examples of robot manipulators include the Haptic Master 

[VanderLinde02], a robotic manipulator designed from the ground upwards for use as a 
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haptic device, the MEL Master Arm [Kotoku92] and the JPL universal master 

[Bejczy80], both developed for use in teleoperation applications with 4 DOF and 6 

DOF respectively and the Magnetic Robot interface developed at the University of 

Iowa [Luecke97], a robotic manipulator that couples the users hand to the robot 

through magnetic actuation allowing both low and high frequency display in the same 

device. 

 

2.5.2.4.1 Encounter Devices 

Encounter type devices are unique in that they are the only type of haptic device that 

is not directly attached to the user but instead stays in a position and awaits the user to 

encounter it.  This provides real free sensations (as the user is in fact not touching 

anything) as well as real touch sensations to the user.  The motion of the hand is 

recorded through the use of cameras and this motion is used to determine where a 

collision will occur.  The encounter device (normally in the form of a robot 

manipulator arm) then moves into the desired position so that when a virtual collision 

occurs, the robot is in the correct position to provide the haptic feedback.  Work has 

been done in the development of encountered-type haptic displays by McNeely, Tachi 

and Yokokohji [McNeely93] [Tachi94] [Yokokohji04].   

 

2.5.2.5 Magnetic Levitation Devices 

 

Figure 2.11: The Mag Lev Wrist device developed at Carnegie Mellon University [wwwMagLev05]. 

 

Magnetic levitation devices utilise lorentz force and are ideal for applications 

requiring small motion due to their low mechanical impedance and high acceleration 

capabilities.  Benefits of using magnetic levitation devices are that they are well 

understood, are compact and offer potentially high bandwidth.  Examples of magnetic 
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levitation devices have been developed by Berkelman et al [Berkelman96] 

[Berkelman97] [Berkelman99] and Salcudean and Parker [Salcudean97]. 

 

2.5.2.6 Magneto-Rheological Fluid Devices 

A magneto-rheological fluid (MRF or MR fluid) is a liquid that solidifies when 

exposed to an external magnetic field.  They have been used to simulate object 

compliances where the user physically touches the contained MRF [Scilingo00] as 

well as in devices where the MRF is used as a damper [Noh09] [Han09]. 

 

2.5.2.7 Exoskeletons 

(a)  (b) 

Figure 2.12: a) A grounded exoskeleton developed by Bergamasco at PERCRO [wwwPERCRO05] 

and b) the ungrounded Cyber Grasp exoskeleton glove from immersion [wwwCGrasp05]. 

 

Exoskeleton type interfaces are worn on the operator’s body and are generally 

ungrounded interfaces.  Their workspace can be designed to match the DOF of human 

movement closely and can present forces at the joints.  The PERCRO exoskeleton 

[Prisco98] is an example of an arm exoskeleton supported by the shoulders and trunk 

of the user.  The Cyber Grasp [wwwCGrasp05] is an example of a hand exoskeleton.  

Since exoskeletons are usually ungrounded, it is not possible to determine a number 

of properties of an object, e.g. weight, although a number of exoskeleton devices have 

been grounded [wwwCForce05].  Furthermore, ungrounded devices cannot simulate 

contact with immovable objects such as a wall resulting in the user being able to fully 

intersect these objects.  They are also bulky and obtrusive to the operator and can lead 

to muscle fatigue quickly.  
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2.5.2.8 Wheel Based Devices 

 

Figure 2.13: A 3 wheeled Cobot (collaborative robot) developed at the Laboratory for Intelligent 

Mechanical Systems, Northwestern University [wwwLIMS10]. 

 

Wheel based devices rely upon a wheeled platform, or armature that the user can 

move around easily.  By applying the brakes on the wheels or rotating the wheel 

orientations it is possible to force the user to take a particular path.  Typically, these 

type of devices are passive (i.e. they do not apply a force, only resistance).  The 

Cobots of Northwestern University are an example of such a device [Pan05] 

[Faulring06]. 

 

2.5.2.9 Direct / Gear Drive  

Direct drive or gear driven mechanisms connect the actuator directly to the end 

effector.  They have the advantage that they are easy (and hence cheap) to 

manufacture and they are quite robust.  However, direct drive mechanisms can add 

considerable inertia to the system, are difficult to develop for systems with high DOF 

and are prone to overheating.  These types of mechanism are used extensively in force 

feedback joysticks and steering wheels used for computer games as they are low DOF 

devices (1 DOF for a steering wheel and 2 DOF for a joystick), the higher inertia is 

actually desired in computer games and if the actuators do start to overheat, 

temporarily switching off the force feedback is a legitimate solution. 
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(a) (b) 

Figure 2.14: a) The Logitech G25 force feedback steering wheel uses two motors to provide the force 

feedback.  This enables the G25 to provide the strongest force feedback possible without the problems 

of overheating.  b) The Logitech Force
tm
 3D Pro force feedback joystick [wwwLogitechGames07]. 

 

2.5.3 Control Strategies for Constrained Motion Devices 

Due to the mechanical construction of haptic devices, two main control strategies 

have been developed in order to control them.  Small, lightweight devices (or low 

inherent inertia devices) such as the Phantom use impedance control (where the 

position is controlled) whereas high inherent inertia devices, such as the Haptic 

Master, use admittance control (where the force is controlled).  In impedance control, 

the user supplies a position to the controller which is used to generate a force whereas 

with admittance control the user supplies a force to the controller in order to move to 

a new position.  With impedance control, the actuators are powered when the user is 

in contact with a virtual constraint whereas with admittance control the actuators need 

to be powered in order to move through virtual free space.  As such, low inherent 

inertia devices using impedance control are very good at simulating moving through 

virtual free space but are unable to render very hard contacts.  In contrast, high 

inherent inertia devices using admittance control can create a very good illusion of 

solidity when in virtual constraint but are unable to create inertia free movement 

whilst moving in virtual free space. 
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Table 2.3 shows the different properties of a number of constrained motion devices. 

 

Device Workspace Peak Force / 

Torque 

Sensor 

Resolution 

Bandwidth 

Position/Force 

C.M. Maglev 

Device 

25x25x25mm 

15-20
o
 rotation 

50N / 6 Nm 5-10 µm > 100Hz / ua 

Phantom 1.5 195x270x375mm 8.5N / NA 0.03mm ua / 800 Hz 

SPIDAR 300mm Diameter Sphere 4N / NA 0.503mm ua / 30 Hz 

DELTA Haptic 

Device 

Cylinder: 360mm diameter x 

300mm Length 

25N / NA <0.1mm ua / ua 

 

Table 2.3: Properties of different constrained motion devices.  Key: NA means Not Applicable and ua 

means that data is unavailable. The workspace is the area in which the haptic device is able to be used 

freely before the mechanical structure starts to interfere, the Peak Force/Torque is the maximum 

force/torque that can be applied over a short interval, it is not the maximum continuous force.  The 

Bandwidth refers to the maximum bandwidth that can be achieved by the device which determines the 

maximum frequency that the device can display. 

 

2.5.4 Tactile Displays 

Tactile displays appeal to the cutaneous sense in order to portray high frequency 

texture information, temperature or pain.  We perceive surface texture through the 

vibrations generated by stroking a finger over the surface.  Tactile sensing is also the 

basis of complex perceptual tasks like medical palpation, where physicians locate 

hidden anatomical structures and evaluate tissue properties using their hands. 

 

Tactile display devices stimulate the skin to generate these sensations of contact.  The 

skin responds to several distributed physical quantities; the most important are high-

frequency vibrations, small scale shape or pressure distribution and thermal 

properties. 
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Figure 2.15: The Forschungszentrum Karlsruhe pin array. 

 

Vibrations can relay information about phenomena like surface texture, slip, impact 

and puncture [Kontarinis95].  Kontarinis and Howe showed that, in many situations, 

vibrations are experienced as diffuse and non-localised, so a single vibrator for each 

finger or region of skin may be adequate.  This is further supported by the work of 

Harwin and Wall [Wall00] [Harwin99].  Small-scale shape or pressure distribution 

information is much more difficult to convey.  The most common design approach is 

an array of closely-spaced pins that can be individually vibrated against the finger tip 

to approximate the desired shape.  To match human finger movement speeds, 

bandwidths from DC to several 100Hz may be required.  To match human perceptual 

resolution, pin spacing of less than a few millimetres are appropriate so, in order to 

convey a range of spatial scales across a fingertip, many fast actuators may need to be 

present in a few cubic centimetres. 

 

Thermal display is another area of research.  Because human fingers are often warmer 

than the “room temperature” objects in the environment, thermal perception is based 

upon a combination of thermal conductivity, thermal capacity and temperature.  This 

allows us to infer material composition as well as temperature difference.  A number 

of thermal displays have been reported [Caldwell93] [Ino93] which are usually based 

upon Peltier thermoelectric coolers. 

 

Current research on tactile displays has much in common with previous work on 

sensory substitution for the disabled.  This includes tactile pin arrays and servo 

systems to convey visual information to the blind [Bliss70] and vibrotactile displays 

of auditory information for the hearing impaired. 
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2.5.5 Perceptual Effects Caused by Haptic Devices 

When interacting in a virtual world using a haptic device a reasonably good 

approximation of the world can be achieved using current technology.  However a 

number of factors relating to the haptic device can arise that can greatly affect the 

user’s perceptions and thus destroy the illusion of touch.  One of the most important 

factors in rendering ‘believable’ haptic environments, with regard to impedance based 

kinaesthetic type devices, is the need for a constant and high update rate for the 

control loop; the de facto standard refresh rate is 1000Hz.  These high update rates are 

required as the update frequency is directly related to the maximum, stable stiffness 

that can be achieved although the use of a lower update rate can still produce 

acceptable results.  Unfortunately, at high stiffness levels vibrations are more likely to 

occur which destroys the illusion of touching a hard contact.  For example, it has been 

suggested that haptic update rates > 6000Hz are required in order to simulate very 

stiff surfaces (>2000N/m) without perceivable vibrations occurring [Kabelak00].  

Actuator saturation is also a concern since if the user provides more force than the 

device can apply then the user will move through the object.  Similarly, the system 

dynamics of the device can have equally undesired effects such as the feeling of 

moving through treacle (due to the device’s inherent inertia) when in virtual free 

space. 

 

Figure 2.16 illustrates the impedance criteria that must be satisfied in order to achieve 

ideal performance.  If a constrained motion device lies outside the shaded region for 

both virtual constraint and virtual free space it will be perceived as having no 

resistance in virtual free space and infinite resistance when in virtual constraint 

[Lawrence94].  The encounter type haptic devices are the only haptic devices that can 

achieve this.  However, the speed at which the robot arm can move to intercept the 

user can add a large latency into the haptic simulation. 
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Figure 2.16: Impedance objectives for an ideal equivalent haptic interface based upon human 

perception limitations, adapted from [Lawrence94].  The ideal equivalent haptic interface would not 

enter the forbidden region and so would exert no impedance on the user when in virtual free space and 

an infinite stiffness when in hard contact. 

 

Although the haptic device can affect the user’s perception in a negative way, it is 

also possible to use our knowledge of human perception to overcome some of the 

limitations of the hardware constraints.  Force shading is such a technique that 

exploits the fact that force direction is perceptually more important than absolute 

position when feeling a surface [Ernst04]. 

 

2.6 Hand Grasps and Multi-Finger Haptics 

Whereas most of the devices shown in Section 2.5.2 have been single point haptic 

devices, multi-finger haptics is where multiple interaction points can be controlled.  

Where natural grasp and manipulation is required, by having interaction points 

located on the fingers, it becomes possible to interact in the virtual world in a much 

more natural manner.  The physics of the world can also be made more realistic as it 

becomes possible for objects to be lifted and rotated as opposed to being fixed in 

place or having limited degrees of freedom as is currently necessary with only a single 

interaction point.  Furthermore, work done by McKnight et al [McKnight04] has 
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shown that a user’s effectiveness in interacting within a virtual environment is greatly 

improved in terms of time taken and accuracy when using multiple interaction points.  

Figure 2.17 shows a sphere being manipulated with multiple points of contacts. 

 

 

Figure 2.17: A sphere being manipulated with three virtual fingers.  The user is able to pick up and 

rotate the sphere before placing it back down.  With only one point of contact the orientation of the 

sphere must be fixed otherwise it will be impossible to pick up the sphere. 

 

2.6.1 Types of Hand Grasp 

The way that we manipulate objects can be characterised by a number of different 

hand movements.  These movements were originally characterised into two distinct 

groups by Napier [Napier56] as, non-prehensile movement “in which no grasping or 

seizing is involved but by which objects can be manipulated by pushing or lifting 

motions of the hand as a whole or of the digits individually” and prehensile movement 

“in which an object is seized and held wholly within the compass of the hand.”  

Napier also differentiates between power and precision grip.  Landsmeer 

[Landsmeer62] expanded upon this work by clarifying power grip and precision 

handling, a term which he coins in preference to Napier’s precision grip since 
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handling implies an active state in which manipulation is occurring.  Using 

Landsmeer’s definitions, a power grip is a “prehensile activity with no manipulation 

taking place”.  Another defining characteristic of the prehensile power grips is that the 

whole hand wraps around the grasped object and invariably the object touches the 

palm of the hand. 

 

Figure 2.18: A grip taxonomy from [Cutkosky89].  On the left are the power grasps and on the right, 

the precision grasps. 

 

Whereas the power grips are appropriate for actions where large forces are required, 

the precision grips are used when more precise actions are needed.  The object is 

grasped with the tips of the fingers allowing for precise movements of the object.  

This includes actions such as writing with a pen or picking up small, lightweight, 

objects. 

 

Our choice of grip is determined by the task that we are undertaking and so it is not 

appropriate to characterise the grip types based upon items held.  For example, a 

different grip is used if we are using a knife for chopping or slicing. 
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2.6.2 Multi-Finger Haptic Systems 

By choosing the placement of the interaction points it is possible to allow all of the 

grasps described previously to be achieved (see Figure 2.19). 

 

 

Figure 2.19: Three Phantom haptic devices mounted so that three fingers can be used to interact with 

the virtual world.  By replacing the rightmost Phantom with a palm attachment, power grips can also be 

modelled.  Unlike the immersion Cyber Grasp, this setup is fully grounded and so allows for the 

simulation of weight as well as shape.  

 

The advantage of using multi-finger devices over single point devices is the ability to 

grasp and manipulate objects in a natural manner.  When incorporated into a virtual 

world, this can considerably reduce the learning time required in order to interact with 

the world since the same real world actions can be directly applied in the virtual 

world.  This fast learning curve also allows users to do relatively complex tasks in 

very short periods of time.  For example, people who have never experienced 

computer simulated haptics are quite capable of throwing a virtual ball into a virtual 

hoop within 2 minutes of using the system without being given any instruction. 

 

However, multi-finger systems currently suffer from two major problems: a smaller, 

more restrictive workspace compared with an equivalent single finger device when 

multiple devices are used, and bulky and obtrusive hardware for glove based devices.  
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When combining a number of single finger haptic devices, as shown in Figure 2.19, 

the workspace is reduced significantly in at least one of the dimensions.  Movement is 

also restricted due to the mechanical design of the devices which limits the range of 

available degrees of freedom.  For example, the system shown in Figure 2.19 has had 

the workspace optimised for use with the right hand and sideways and vertical 

motion.  However, its workspace in the forward axis is limited to about 20cm 

(compared to 37.5cm for a single finger device) and the hand can only be rotated 

about 100 degrees around the wrist before the self collision occurs between the 

mechanisms.  

 

2.7 Applications 

There are currently three main areas where haptic interfaces are used or being 

developed.  Medical / surgical simulation for training surgeons is an area of great 

interest with a number of haptic devices developed specifically to resemble surgical 

tools [wwwLapara05] [Chial02].  Research is also underway in the use of more 

generic haptic devices (e.g. the Phantom) in order to facilitate the learning of cutting 

through different materials with different types of instruments [Mahvash02].  The 

development of these haptic devices has also led to the development of methods that 

allow objects to be deformed [Corso02] and dissected [Kundu07] leading to research 

in the area of volumetric modelling and how volumetric models interact with each 

other when forces are applied [Kuroda02].  Haptic devices are also used in 

rehabilitation and for assisting people with disabilities.  The Optacon [Bliss70] was 

developed in order for the visually impaired and blind to read standard text.  

Consisting of a photosensitive detector and a pin based tactile display, the user scans 

the text which is then converted into Braille and displayed on the tactile pin array 

which they are then able to sense.  Haptic systems are also being developed in order to 

assist in the rehabilitation of stroke patients [Amirabdollahian02].  Utilising the large 

workspace of the Haptic Master, the haptic device guides and corrects the users 

position whilst they are exercising in much the same way that a physiotherapist 

would. 

 

Teleoperation is another area where the addition of haptic stimulation is beneficial.  If 

the operator is able to ‘feel’ what the robot ‘feels’, then this gives the operator a better 
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understanding of the environment and task that the robot is undertaking.  In fact, the 

development of haptics emerged from the field of teleoperation; haptic feedback 

devices were pioneered in teleoperation systems as far back as the 1940s.  In both 

teleoperation and virtual environments where haptics are used, a loop is closed 

between the human operator ‘inputs’ and forces applied by the haptic device.  In 

teleoperation this loop is closed via a communication link, robotic manipulator and 

the environment.  In virtual environments, the loop is closed via a simulation. 

 

Figure 2.20: An 8 player version of Virtua Racing by SEGA, 1992.  Each race car would move around 

and force feedback was also provided through the steering wheel [wwwVRRacer07]. 

 

Perhaps the most widespread use of haptic devices is in the entertainment industry.  

The first haptic enabled systems were racing arcade machines where the player would 

sit in a replica car and the car body would move in a manner determined by what the 

player did with further feedback being received through the steering wheel.  

Motorbike arcade machines (such as SEGA’s Hang-on [wwwHangOn07]) also 

existed where the player would sit on a replica motorbike and would feel the bike 

move.  The player would also need to use his body to turn corners by throwing his 

body into the turn.  With the increase in computer and game console ownership there 

are now a number of cheap haptic enabled input devices available including force 

feedback joysticks and steering wheels [wwwLogitech07], vibro-tactile joypads, and 

both force feedback and vibro-tactile mice [wwwiFeel05] [wwwWingman05].  Game 

development studios are also incorporating haptic feedback into more games that 

make use of these ‘force enabled’ devices.  The Nintendo Wii in particular is a 

console that was designed from the outset to incorporate a novel input device that was 
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both motion sensitive as well as providing haptic feedback in the form of both a 

“rumble” actuator and a speaker embedded in the handset [wwwWiiMote10]. 

 

Other areas where haptics have been used include scientific visualisation, 

collaboration in virtual environments and industrial modelling. 

 

One of the most prominent examples of the use of haptics in scientific visualisation is 

Project GROPE [Brooks90].  This used a high DOF haptic device in order to augment 

a visual display to improve the perception and understanding of both force-fields and 

of world models populated by impenetrable objects.  The aim of the project was to 

assist a chemist in finding solutions to molecular docking problems using haptics as a 

means to feel the intermolecular forces.  They found that, after some initial training, 

chemists were quickly able to find known solutions for drug docking whilst very good 

docks were found for drugs whose true docking was still unknown. 

 

Research is also underway investigating how haptics can be integrated into 

collaborative virtual environments (CVEs) to facilitate the collaborative aspects of 

tasks involving more than one person.  Preliminary results have shown that the 

addition of haptics allows much quicker solutions to be found [Seelig03].  Suitable 

network protocols are also being developed in order to facilitate the high data 

bandwidth that haptics requires so that remote users can interact haptically with the 

same virtual object [Jordan02]. 

 

Stylus based haptic devices are starting to appear in industrial modelling.  Instead of 

using the more usual mouse based approach to building 3D models, a haptic device 

(such as the Phantom) can be used in the same way that a sculptor models in clay.  By 

starting with a block of virtual clay the stylus can then be used to deform the clay to 

generate the final model.  Similarly, haptic devices are finding applications where 

models and materials can be touched and explored without the need to build an 

expensive prototype or in situations where it is possible to only feel a virtual product 

[Moody01]. 
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2.8 Current Limitations of Haptic Devices 

Current generic haptic devices posses a number of limitations that reduces their ability 

to be used in a totally natural manner.  The majority of haptic devices are single point 

devices that are interacted with through the use of a stylus or finger gimbal.  In the 

real world, as we explore an object we normally use more than one finger if not our 

whole hand in the exploration process [Lederman93].  Interaction with an object 

through the stylus takes advantage of distal attribution, the ability for humans to easily 

extend their perception to the end of an implement, yet in reality the majority of 

exploration that we do is finger based.  Also, the end point, or haptic interaction point, 

is just that – a point.  When humans explore a surface they know when they are 

approaching an edge and are easily able to traverse the edge without falling off the 

object.  This is due to the shape of our finger pads which allows partial contact with 

the surface and our knowledge that if we don’t change the direction of the force that 

we apply we will fall off the edge.  With a point contact we have no ability to 

haptically determine whether we are approaching an edge which causes us to fall off 

edges easily.  Work in the area of haptic rendering [Morgenbesser95] and hardware 

design [Kuchenbecker04] has been done in order to try and alleviate this problem but 

both solutions are compromises and not an ideal solution.  Another approach that 

gives a more lifelike feel to edges involves replacing the haptic interaction point with 

a volume such as a cylinder or a sphere.  Again, this is not the perfect solution but it 

does allow the user to experience the change in the direction of the simulated force as 

an edge is traversed. 

 

When using a single point device we are also limited to the kind of actions that we can 

perform.  Picking up objects can only be achieved if we have a ‘handle’ that we can 

reach under and lift or by not simulating rotations due to contact. 

 

Humans also explore the world through the use of more than one finger.  When we try 

to identify an object by its shape we use many fingers to help us build up an image of 

the object.  Although this is possible with a single finger input device it takes longer 

to accomplish than in the real world with a lower probability of successful 

identification.  Multi-finger haptic devices exist [wwwCGrasp05] but these are 

usually ungrounded and so it is possible to interpenetrate the objects and the illusion 
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of weight cannot be conveyed.  Although grounded multi-finger devices are also 

available [wwwCForce05] the bulk and obtrusiveness of such devices can have an 

adverse effect on the illusion.  

 

All grounded haptic devices have a limited workspace.  Increasing the size of the 

workspace potentially has the effect of introducing compliance into the system which 

reduces the ability to simulate a hard contact.  Although some haptic devices are 

capable of a large workspace, e.g. the SPIDAR, the compliance in the system and 

reduction in maximum exertable force can help to destroy the illusion of contact.  

Large workspace devices need to be engineered from the start as large workspace 

devices (as was done when the Haptic Master [VanderLinde02] was developed) instead 

of just increasing the size of existing devices, as can be seen by the performance of 

the Phantom 1.5 compared with the Phantom 3.0. 

 

As noted earlier, haptic devices generally stimulate either the cutaneous or 

kinaesthetic sense.  It has been shown that by integrating both kinaesthetic and 

cutaneous stimulation into a single device a more realistic experience can be provided 

[Wall00].  Kuchenbecker et al [Kuchenbecker04] have demonstrated a simple 

attachment to the Phantom allowing both cutaneous and kinaesthetic feedback to be 

applied in order to aid in edge transitions.  The limited bandwidth of constrained 

motion devices and the non-kinaesthetic stimulation of tactile displays are limitations 

to both types of display.  However, there are many applications where these 

limitations are inconsequential, e.g. using a tactile display to feel the texture of cloth 

[Moody01]. 

 

2.9 Haptic Software Components  

There are a number of software components that are required in order to create a 

haptic enabled system.  Figure 2.21 shows the typical systems that are required and 

how they are typically linked.  
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Figure 2.21: A systems design for creating haptic enabled applications.  Some of these systems may 

already be used by the application but it may not be possible to reuse them due to the higher 

performance demands of haptic systems. 

 

2.9.1 Device Interface 

The Device Interface is a component that allows access to the haptic hardware.  At a 

minimum it will expose the position and orientation (if applicable) of the haptic end 

point and accept a force and torque vector to create at the haptic end point.  All 

kinematic transformations required to convert the joint angles to end point coordinates 

or to convert the desired force to actuator inputs will be calculated as part of the 

device interface system. 

 

2.9.2 Collision Detection 

The collision detection system takes the position of the haptic end point and compares 

its position to the objects contained within the object database to determine if a 

collision has occurred.  

 

2.9.3 Contact Response 

In conjunction with the physics engine, once contact has been made with a virtual 

object an appropriate response needs to be generated.  This response may require that 

forces are presented to the user and that the position of virtual objects need to be 

recalculated due to the contact.  Haptic rendering is synonymous with contact 

response when the contact is made through a haptic enabled object (such as the haptic 

interaction point). 

Device Interface 

Collision 

Detection Object Database 

Contact 

Response 

Physics Engine 
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2.9.4 Object Database 

The object database contains all the information about the various objects that are in 

the virtual world.  Each object will contain at the minimum a position, an orientation 

and an object representation such as a 3D mesh.  Dependant upon the implementation, 

objects may also include physical parameters such as mass and inertia.  The actual 

included parameters will depend upon the application. 

 

2.9.5 Physics Engine 

The physics engine contains the functionality to be able to create a dynamic virtual 

world, i.e. a world where objects can move around.  The way that objects react when 

subjected to external forces is calculated by the physics engine. 

 

2.10 Chapter Summary 

This chapter has introduced the reader to the field of haptics.  It has defined what 

haptics is and delved into the physiology of our haptic sense.  An exploration of the 

psychology and perception of touch is then given which shows the reader how we use 

touch to explore the world and understand the different physical properties of an 

object.  The relationship of our touch sense to our other senses is described which 

shows that seeing is not always believing when other contradictory information is 

present from our other senses.  This last point is of particular importance as it shows 

that stimulation of the different senses can have a significant role in how we perceive 

the world.  This may be used to our advantage in order to help create a more 

believable virtual world whilst using less capable haptic devices through stimulus of 

our other senses. 

 

The different types of haptic devices, the different control strategies that are used and 

the different perceptual effects that may occur due to the control strategies are 

discussed.  This research was completed using multiple Phantom 1.5 haptic devices 

running at a high update rate (>800Hz) in order to minimise these effects.  
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Since this thesis is concerned with multi-finger manipulation, an exploration of the 

different types of hand grasp are given and how multi-finger haptic systems can be 

designed to allow for the different grasps.  

 

The three main areas where haptics is used is discussed.  This includes medical / 

surgical simulation, teleoperation and entertainment.  Other areas are also touched 

upon.  This is not an exhaustive list of the areas where haptics is employed but gives a 

rounded picture of what is currently available. 

 

This chapter concludes with the current limitations of haptic devices, in particular the 

limited manipulative abilities of a single point device and the simplification of physics 

modelling on multi-point devices, and a brief guide to the requirements for developing 

a haptic enabled software simulation. 

 

As shown by this chapter, the area of haptics is a huge field to research in.  As there 

has been limited work done in the field of multi-finger haptics the rest of this thesis is 

concerned with how natural manipulation of virtual objects can be achieved.  Since it 

is possible to create an effective (albeit with a limited workspace) three finger haptic 

system using multiple Phantoms, the main concern of this thesis is the software 

algorithms required to achieve natural manipulation of virtual objects.  This area of 

research is generally referred to as haptic rendering as it takes the data from the virtual 

world and renders it into a suitable form for the user to experience (i.e. a force 

provided to the haptic device).  The following chapter delves deeper into haptic 

rendering and physics modelling in order for the reader to understand the background 

of the research. 
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3 Physical Modelling and Rendering Methods 

Physically based simulation in haptic environments requires that manipulated objects 

have attributes analogous to physical properties observed in the real world.  These 

include mass and inertia for direct object manipulation as well as properties such as 

surface texture and frictional characteristics.  A minimum set of requirements for the 

successful implementation of a haptic enabled physical simulation requires: 

 

1 The identification of collisions. This is a problem of collision detection, 

which becomes more difficult and computationally expensive as the model of 

the virtual environment becomes more complex.  

2 An estimation of external forces resulting from the collisions (including 

shear forces such as friction).  This force is applied back through the haptic 

device and creates the ‘feel’ of the object. 

3 An appropriate response to the residual forces.  This is the overall response 

of the object based upon all the forces acting upon it. 

 

Haptic rendering is concerned with finding solutions to 2 and 3 above. 

 

The purpose of this chapter is to investigate the current methods of haptic rendering 

currently used for feeling and manipulating solid, non-deformable objects.  An 

examination of the various friction models and implementations is given since surface 

friction is both an important object property and essential for the natural manipulation 

of an object.  The physical properties that are required for an object to be manipulated 

are also examined.  Since it is necessary that contact is made between the object and 

the haptic interaction point, collisions detection methods for haptic systems are also 

described. 

 

3.1 Current Haptic and Visual Rendering Methods 

Rendering is the process of taking raw data stored in a computer and turning it into a 

human understandable form.  In graphics this involves converting the 3D model data 

into a 2D image displayed on the monitor and in haptics, rendering is the process of 
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determining what force (direction and magnitude) should be applied to the haptic 

device in order for the user to feel it. 

 

3.1.1 Visual vs Haptic Rendering 

There are three significant differences between visual and haptic rendering: minimum 

required update rate, scene complexity and dedicated hardware. 

 

Haptic rendering must occur at a high update rate, preferably > 1000Hz, in order to 

convey a realistic and believable sensation.  In contrast to this, in order to convince 

our visual system that an object is moving a persistent, graphical update rate > 24Hz 

is required.  Compared with the field of real time graphic rendering, haptic rendering 

is a much newer field.  As such haptics does not yet benefit from the vast array of 

different rendering methods available to graphics or that many of these algorithms 

have been implemented in hardware to greatly increase the speed of their execution.  

Due to the greater maturity of graphic rendering, along with the advantages of 

hardware acceleration, it is possible to graphically render extremely complex scenes 

that are realistically lit in realtime.  Although haptic rendering is conceptually a lot 

simpler than graphical rendering, since only a few forces need to be generated 

compared with rendering an entire scene, the high update rate required and the 

potentially large quantity of data that needs to be processed each update makes this a 

non-trivial problem. 

 

3.1.2 Single Point Haptic Rendering Methods 

Haptic rendering methods have been developed in order to simulate both rigid and 

deformable surfaces.  Force estimation is usually calculated from the ‘depth of 

penetration’ once a collision has been detected.   

 

3.1.2.1 Vector Field methods 

Initially, haptic rendering was focused on the display of simple, rigid, and frictionless 

3D objects such as a cube, cylinder, or sphere using vector field methods;  the force to 

apply is proportional to the depth of penetration and, for simple objects (spheres and 

cylinders), the direction can be calculated based upon a mathematical description of 
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the object (see Figure 3.1). For more complex objects, the computations for 

determining the force vector sometimes involve dividing the object into sub-spaces 

associated with particular portions of the object’s surface (see Figure 3.2). The 

problem with this method of rendering occurs when the haptic interaction point (the 

virtual representation of the actual haptic point) crosses between these subspaces as 

the direction and magnitude of the force would change abruptly in a very non-real 

world manner.  Vector field methods also suffer from ‘push through’, the ability to 

actually push through the object and come out of the other side. 
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Figure 3.1: Rendering a sphere using the vector field method.  The direction of the required force is 

always in the direction of the haptic interaction point (HIP) to the centre of the sphere.  The magnitude 

of the force is proportional to the depth of penetration. 

 

F
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Figure 3.2: Rendering a cube using the vector field method.  The cube is divided into 6 equal volumes 

to determine the direction of the force vector.  As the haptic interaction point moves from one region to 

the next a strong discontinuity occurs due to the sudden change in direction of the force. 
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3.1.2.2 Proxy-Object methods 

The God-Object method of haptic rendering, developed by Zilles and Salisbury 

[Zilles95], reduces the problems associated with the vector field method by 

introducing a second point that is used to track the position and response of a haptic 

device when in contact with a surface.  The haptic interaction point is used to describe 

the endpoint location of the physical haptic interface as sensed by the encoders. A 

second conceptual point, the god-object, is used to track the history of the contact by 

locating the position on a surface polygon where forces should be directed. 

Conceptually this god-object slides along the surface polygons such that the distance 

to the haptic interaction point is always minimised. A notional spring is then used to 

compute the force that is to be applied to the haptic interface point such that the 

person’s finger is pushed towards the god-object. While the haptic interface is in 

virtual free space the haptic interaction point and the god-object are collocated. This 

approach gives the normal force to the most appropriate surface on the object that has 

been touched. A Lagrangian method is used to determine where the god-object should 

be positioned when penetration has occurred.  If required, lateral friction forces can 

then be superimposed onto this normal force based on the detected velocity of slip 

[Salcudean95]. 

 

Ruspini et al. [Ruspini97] proposed another constraint based method that used a 

sphere instead of a point to represent the haptic end point. This solved the problem of 

‘falling through the cracks’ that could occur with a point based interaction point 

where the ‘cracks’ were created at the edges and were due to floating point precision 

errors.    This method also allowed for additional surface properties including friction, 

surface stiffness and texture to be added and could also incorporate force shading. 

 

3.1.2.3 Force Shading and Bump Mapping 

One of the problems associated with the god-object method is that discontinuities still 

occur when the proxy reaches and crosses a virtual edge.  Morgenbesser and 

Srinivasan [Morgenbesser95] [Morgenbesser96] suggested ‘force shading’ as a means 

to overcome this limitation.  Force shading requires that the vertex normals of the 

contacted surface are interpolated in a similar manner to that required for Phong 

shading as used in computer graphics [Phong75].  Unfortunately, this has the effect of 
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smoothing all edges introducing a feeling of roundness due to the difference between 

the haptic force field and the actual normal field of the surface. 

 

Force shading works by taking advantage of the way that the body perceives force and 

positional cues.  The haptic system of the hand gives greater emphasis to force cues 

then positional cues and so as an edge is approached, the change in the direction of the 

force convinces the brain that the edge is curved, even though the positional cues tell 

the brain that there has been no change.  However, there is a limit to the size of these 

perceptual discrepancies before the brain rejects the illusion of curvature and this limit 

has been investigated by Ernst et al [Ernst04]. 

 

Work has also been done in the rendering of haptic bump maps.  Of the techniques 

developed, some follow the graphical route of displacement mapping, which 

effectively replaces the flat surface with a bumpy surface [Ho99], while others have 

used the fact that human perception can be tricked to think that a surface is bumpy by 

rapidly changing the frictional characteristics of the surface as the surface is traversed 

[Otaduy04].  

 

3.1.2.4 CSG modelling 

With the exception of the vector field methods, the rendering methods described 

previously have been applied to models stored as polygon meshes.  However, this is 

not the only way to store an object and this has led to different haptic rendering 

methods for different object storage methods.   

 

Constructive Solid Geometry (CSG) is a powerful concept for object modelling in 

automation procedures because many manufactured objects can be represented by a 

combination of simple basic primitives.  These complex objects are created by 

applying boolean operations on simple, mathematical objects e.g. a box with a hole 

can easily be defined as a cylinder subtracted from a box.  Figure 3.3 shows how a 

complex object can be created using only three different operators: Intersection (∩ ), 

union (∪ ) and difference ( - ).  Raymaekers and Van Reeth [Raymaekers02] showed 

how this representation of objects could be rendered haptically.  The advantage of 

using this method of object representation is that complex objects can be stored in a 
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small amount of memory and that curved surfaces can be haptically rendered 

correctly. 

 

Figure 3.3: By applying boolean operators with simple primitives, complex shapes can be easily 

generated [wwwCSG]. 

 

3.1.2.5 NURBS modelling 

NURBS (Non-Uniform Rational B-Splines) are another method whereby objects are 

represented in graphics, particularly in computer aided design (CAD) packages.  

NURBS are a parametric means of describing an object’s surface and are ideally 

suited for the creation of ‘organic’ objects that feature many curved surfaces.  

Methods have been proposed for the haptic rendering of NURBS surfaces 

[Thompson99] [Patoglu05] but due to the highly mathematical nature of this type of 

surface it is computationally expensive to use for haptic rendering.  This is due to the 

fact that there is no simple solution to finding where a ray collides with the surface 

which is necessary for calculating the depth of penetration and surface normal.  The 
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only way to calculate this point is to use an iterative method that will converge on the 

desired point and so it also does not guarantee that the exact point of collision will be 

returned [Wang05]. 

 

3.1.2.6 Deformable Meshes 

All the haptic rendering methods described so far have been used to simulate rigid 

surfaces.  Since one of the principle applications of haptics is in surgical simulation 

and training, a large amount of research has been in the development of deformable 

haptic rendering techniques.  Finite Element Methods are both comprehensive and 

well suited for accurate computation of deformations but, due to the complexity of the 

models required and the time required to invert the large but sparse matrices involved, 

they are unable to run at haptic rates. Methods that have been successful include 

modified Spring-Mass-Damper methods [Jansson02] [Maciel04], Long Element 

Methods [Balaniuk00], Radial Element Methods [Balaniuk03] and methods based upon 

the Medial Axis Transform [Corso02].   

 

Tetrahedral meshes are another representation for solid objects ideally suited to 

haptics.  A tetrahedral mesh is the equivalent volumetric representation of a triangular 

surface mesh and they both share many of the same properties.  Any volume can be 

represented using a tetrahedral mesh, and many of the techniques used with triangular 

meshes, such as subdivision of surfaces, and surface smoothing, can be easily 

modified for use with tetrahedrons.  Tetrahedral meshes have been successfully used 

for simulating bone drilling [Fellner06] and for simulating tissue cutting for open 

surgery [Kundu07]. 

 

3.1.3 Multi-Point Haptic Rendering  

The key advantage that multi-point haptic systems have over single point systems is 

the ability to manipulate objects in a realistic manner.  When manipulating an object 

with a single finger it is only possible to move the object by pushing it.  It is only 

possible to lift an object if it has an overhang or a hook as part of its structure or by 

constraining the rotational axis of the object so that it becomes possible to lift it from 

the bottom.  For more complex single point manipulations it becomes necessary to 
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attach the virtual object to the haptic interface through the use of an external system, 

such as a button.  When using multiple interaction points, grasping and manipulating 

objects in a natural and intuitive manner becomes possible. 

 

Although multi-finger haptic devices exist there is very little literature on how 

simulated objects react when under the influence of multiple points of contact.  Boulic 

et al [Boulic96] describe methods for manipulating objects with multiple fingers but 

they were using non-force feedback gloves.  They describe a method that shows a 

correct visual representation of a hand on the object even though the user’s actual 

hand may be in a more closed form.  By storing two models of the hand, the virtual 

hand being displayed and the actual hand given by the data glove sensors, forces on 

the grasped object were able to be calculated based upon the penetration of the actual 

hand model.  This method allowed for objects to be ‘rolled’ on the fingers by the 

thumb.  When the object was defined as being grasped, the object was attached to the 

hand coordinate frame and moved with the hand. 

 

Maekawa and Hollerbach [Maekawa98] describe methods for two finger grasping and 

manipulation of virtual objects via a haptic interface.  However, what they described 

is based upon six assumptions, the most important ones being listed here:  

 

Assumption 3: When only one fingertip makes contact on the object, the 

contact is frictionless; 

Assumption 4: When an object is grasped by two fingers, each fingertip sticks 

on the object surface without slip; 

Assumption 5: Although the object is grasped only by two fingers, its rotation 

around the axis that connects the two fingertips is constrained; 

Assumption 6: While manipulating the object, its dynamics due to inertia is 

omitted. 

 

Since multi-finger devices allow us to grasp and manipulate objects in a more natural 

manner, it is reasonable to expect any multi-finger simulation to allow for this.  In the 

real world, when we pick up an object we need to overcome gravity and we are able 

to translate and rotate the object at will.  This requires simulating friction in order to 
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be able to lift the object as well as being able to resolve the forces and torques on the 

grasped object to allow it to be manipulated. 

 

3.2 Friction 

Friction is an important aspect of haptic rendering as it contributes a reactive force to 

virtually all mechanical systems and is a property of all real world objects.  Friction is 

also an essential component in object manipulation; in order to lift an object it is 

necessary to grip hard enough in order to increase friction and hence overcome the 

force due to gravity.  If an object is not grasped with enough force then the object will 

slip although excessive force can lead towards fatigue. 

 

3.2.1 Friction Models and Friction Modelling 

The ‘Classical’ model of friction, that relates the normal force to the opposing motion, 

was postulated by Leonardo da Vinci and was rediscovered by Amontons in 1699 and 

further developed by Coulomb in 1785. These rules are that ‘the friction is 

independent of the geometrical area of contact’ and the ‘frictional force is 

proportional to the normal force’. Subsequent work by Bowden and Tabor in 1950 

[Bowden50] showed that the frictional force depended on the true area of contact as 

measured by the adhesion of microscopic asperities on each contacting surface. Figure 

3.4 shows some common models developed to describe frictional forces. Figure 3.4(a) 

is the only linear model and is widely used for analysis even though it is the least 

accurate.  

 

 

Figure 3.4: Various friction models showing the retarding force (y-axis) versus the velocity (x-axis): 

(a) viscous damping; (b) Coulomb model; (c) Coulomb and viscous; (d) “stiction”; (e) Karnopp’s 

model; (f) Stribeck effect; 

a) b) c) d) e) f) 

Friction Friction Friction Friction Friction Friction 

Velocity Velocity Velocity Velocity Velocity Velocity 
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These models describe the force that opposes the relative velocity of the two surfaces. 

In all but the linear friction of Figure 3.4 (a) care is needed to ensure that the friction 

forces can only oppose the applied shear force, and that the transition from ‘stuck’ to 

‘slip’ is handled sensibly. Among these more complex models is the Dahl model 

[Dahl76] which models friction as a local stiffness during the ‘stuck’ state. Thus the 

Dahl model behaves like Columb friction at large amplitudes, and ‘structural 

damping’ at low amplitudes.  “Stiction” or “stick-slip” is modelled by ensuring that 

the static value of friction is higher than the dynamic value (Figure 3.4 (d)).  The 

Karnopp friction model [Karnopp85], proposed in 1985, was developed to simulate 

stiction and was developed specifically for digital simulation where the combination 

of high sample rates and sensor noise results in erroneous estimates of velocity at low 

speeds.  The Karnopp model achieved this using a small region surrounding the zero 

velocity where the stick region is modelled as a force proportional to the velocity and 

a constant Coulomb force is applied in the slip region.  Haessig et al [Haessig91] 

developed the ‘Bristle’ and the ‘Reset Integrator’ models in 1991, which although 

accurate, have a heavy computational penalty. Perhaps the most comprehensive 

friction model is the LeGre friction model [Lischinsky99] which is a development of 

the Dahl model and includes an internal state to allow for microslip. One phenomena 

modelled by the LeGre model is the Stribeck effect shown in Figure 3.4 (f). The 

Stribeck effect governs the transition from ‘stuck’ to ‘slip’ where the value of the 

friction force decreases as the velocity increases. For a survey of friction models, the 

reader is referred to Armstrong-Helouvry et al. [Armstrong-Helouvry94]. 

 

In the field of modelling friction for haptic interfaces, Richards and Cutosky 

[Richards02] discuss both the Dahl and computationally simpler Karnopp model, and 

then use the latter to describe the friction characteristics of a number of materials 

including aluminium-teflon, aluminium-brass and aluminium-rubber.  They noted that 

the trouble with haptic rendering of textures was the difficulty in getting an accurate 

estimation of interface velocity at near zero velocities where quantisation noise from 

the encoders is high. Hayward et al [Hayward00] have also proposed a friction model 

for haptic interfaces based on the Dhal model adapted to account for numerical 

implementation and to minimise drift due to the dominance of noise in the position 

measurement at low speeds. These models do not however, extend readily to the 
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implementation of stable friction based grasps as described by the authors in 

[Melder03]. 

 

Little work has been done on how we perceive friction and which characteristics are 

important for the haptic rendering of friction.  This information is necessary as it 

defines the design parameters required by the hardware manufacturers so that the 

limitations of the haptic device can match human perception limits. 

3.2.2 Friction Implementations 

Linear viscous damping is the most commonly utilised model of friction (Figure 3.4 

(a)) due to its simplicity and ease of implementation and it is often used to simulate 

the friction between two objects.  Simulating friction between the haptic interaction 

point and an object normally uses a stick-slip friction model and is implemented in 

two stages.  Initially, a proxy based algorithm is used to calculate the desired normal 

force.  Frictional components are then calculated and overlaid on top of the previously 

calculated force.   

 

Salcudean [Salcudean95] and Provancher [wwwProvancher07] describe how a 

slightly modified Karnopp model can be implemented.  According to the Karnopp 

model, a mass sliding on a surface with stick-slip friction can be in two states, stuck 

or slip.  When in the stuck state, any external forces (fext) acting on the mass will be 

exactly balanced and the mass will remain in the stuck state.  However, once the 

external force magnitudes exceeds a set value (fmax) the mass state changes to the slip 

state.  While in the slip state, a damping force is exerted on the motion until the 

velocity of the mass is less than a set value (vmin).  At this point the mass changes back 

to the stuck state. 
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Figure 3.5: Stuck phase for Karnopp model. Since the current position is past the transition point, a 

state change will occur on the next update. 

 

From the equations of motion, 

 ext v stickmx f k x f= − +�� �  [3.1] 

While in the stuck state fstick is given by 

 ( )stick stuckf k x x= −  [3.2] 

When fstick > fmax the state changes to slip. While in the slip state the fstick = 0. 

 

When the velocity goes below a threshold velocity, the object returns to the stuck 

phase. It is also common that whilst in the sliding phase, viscous frictional forces are 

superimposed onto the haptic device.  These viscous forces are calculated as acting 

proportionally and in opposition to the velocity of motion. 

 

3.3 Hand Grasps and Object Manipulation Physics 

As described in Section 3.1.3 friction is an essential component in object 

manipulation since, in order to lift an object, it is necessary to grip hard enough to 

increase friction in order to overcome the force due to gravity.  When holding an 

object, a stable grasp is also required although it is not necessary to grasp an object in 

order to manipulate it.  Additionally, when simulating manipulation it is necessary to 

determine how the object should react to all the forces being applied to it.  

 

xstuck is the position where 

forces are directed 

 

x is the current position 

 

T is the transition point where 

a change to sliding will occur.  

Direction of Motion 

Force @ x = k * (xstuck-x) 

xstuck T x 
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3.3.1 Residual Force Resolution 

When a hand holds an object at rest, the forces and moments exerted by the fingers 

balance each other out resulting in no motion of the object.  Such a grasp is said to 

have achieved equilibrium.  Force and form closure are terms that are used to describe 

whether a grasped object in equilibrium is capable of balancing any external forces 

and torques applied to it (force closure) or whether the grasp is capable of preventing 

any object motion through the geometric constraints imposed by the finger contacts 

(form closure). Intuitively, the conditions are equivalent and this was shown to be true 

by Mishra and Silver [Mishra89].  It is also required that a secure grasp is stable, i.e. 

when an object is in a compliant grasp and subjected to a small external disturbance, 

the grasp should return to its equilibrium state.  Nguyen [Nguyen89] showed that 

force closure grasps are stable and therefore so are form closure grasps. 

 

From screw theory it can be shown that, in the absence of contact friction, it is 

necessary to have at least four or seven points of contact to construct a force closure 

grasp of two and three dimensional objects respectively [Lakshminarayana78] 

[Markenscoff90].  The addition of lateral, coulomb friction reduces this to three or 

four points of contact [Markenscoff90]. 

 

Once an object is in a secure, stable grasp it is possible to manipulate the object by 

adding a controlled disturbance to the object.  This disturbance will occur when the 

hand grasping the object is moved.  Since the object is in a stable grasp, the object 

will move with the hand as it tries to reach equilibrium.  The object moves since the 

total forces and torques acting on the object are non-zero (i.e. the object is not at 

equilibrium).  When interacting with a grasped virtual object, the residual force and 

torque of the object due to the applied disturbance can be easily calculated by 

summing all the forces and torques acting on the object.  This force and torque can 

then be applied to a suitable movement algorithm (such as one incorporating 

Newtonian mechanics) in order to move the object. 
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3.4 Properties of Virtual Objects  

In order to create realistic objects for use in a haptic enabled virtual environment, it is 

necessary that all virtual objects posses a number of properties.  The virtual object 

will contain a model, such as a polygon mesh, as well as visual, haptic and physical 

properties.  Visual properties are properties that are purely aesthetic and include shape 

and colour.  Haptic properties are properties that are communicated through touch and 

include frictional properties, haptic textures and bump maps, surface stiffness and 

temperature.  Physical properties relate to how the object moves when subjected to 

forces.  These include the object’s mass and rotational inertias.  Although the physical 

properties also appear to be haptic properties this is not the case.  When manipulating 

an object these properties become apparent to our haptic sense due to how they 

interact with the physics simulation.  However, these properties are still required by 

the physics simulation when the object is no longer being grasped and therefore they 

can not be exclusively haptic properties. 

 

Since the virtual object will exist in a virtual world it is necessary that each object has 

a position and orientation in the virtual world.  The virtual world will contain an 

origin that all the objects are relative to (the world coordinate frame). 

 

3.4.1 Storage Methods for Position and Orientation 

A homogenous transform is a self contained 4x4 matrix that is comprised of a rotation 

and a translation. Most importantly, homogenous transforms are able to transform 

points and vectors from one coordinate frame to another.  Homogenous transforms are 

easily understood since each column represents a characteristic of the objects position 

or orientation.  However, since more degrees of freedom are stored, interpolating 

between two homogenous transforms is difficult without skewing the matrix. 

 

Quaternions are a means of representing only a rotation and so an additional position 

must also be stored. However, quaternions offer greater numerical stability than 

matrices due to the fact that they carry less redundant information (four numbers with 

one constraint compared with nine numbers with many constraints for a rotation 

matrix).  For example, a product of many orthogonal rotation matrices will become 
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skewed over time due to rounding errors whereas a quaternion will only become 

uniformly scaled. It is also computationally simple to do robust interpolation between 

two rotations with a quaternion, a computationally very expensive task when using 

rotation matrices.  Although it is possible to embed the position into the quaternion 

using dual numbers the added complexity that this adds makes it undesirable 

[McCarthy90] 

 

3.5 Collision Detection 

Collision detection is fundamental to haptic simulation and is concerned with whether 

one object has made contact with or is intersecting with another object in the virtual 

world.  In respect to haptic simulations, collision detection can be divided into two 

distinct areas: direct collision between the haptic interaction point and an object 

(haptic-object) and collision between all other objects (object-object).  Since the 

collision between the haptic interaction point and an object must occur at the haptic 

update rate, it is essential that the collision algorithm used is processor efficient.  The 

object-object collisions can occur at the visual update rate and the majority of the 

collision detection should be done at this frequency.  

 

Although the terms intersection and collision may appear interchangeable, they are 

distinguished by the static nature of an intersection and the dynamic nature of a 

collision.  A collision is said to have occurred when an object passes into another 

object whereas an intersection occurs while one object is (partially) inside another 

object.  In general use, an intersection test is computationally more efficient then a 

collision test since the point of collision is not calculated.  Intersection tests are used 

in particular when dealing with bounding volumes (see Section 3.5.2 for more 

information on bounding volumes).  However, in the case of haptic rendering, the 

standard intersection tests can be modified to return the point of collision thus 

allowing a number of parametric objects to be efficiently rendered haptically. 

 

There are many collision detection algorithms available and each has advantages in 

different situations. In haptic rendering the deciding factor is the speed of calculation 

to determine whether a collision has occurred as this is computed at the haptic update 

rate. Two popular collision libraries are OBBTree [Gottschalk96], and H-Collide 
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[Gregory99].  H-Collide was developed specifically to be used in haptic simulations 

whereas OBBTree is a more generalised algorithm ideal for use in the rest of the 

environment.  Other collision libraries include I-Collide, V-Collide, SWIFT++ 

[wwwUNCCol05] and SOLID [wwwSolid05]. 

 

Since many haptic rendering methods are based upon point interactions, when 

developing collision detection algorithms for haptic simulations, it is common to be 

only interested in object-point collisions.  It is also common to only require that a 

point on the collided surface is returned if a collision has occurred.  However, when 

haptic bump mapping is to be rendered, it may be more appropriate to use a collision 

detection algorithm that returns texture mapping coordinates.  [Moller97] describes an 

efficient algorithm that can be used with polygon meshes to return this information.   

 

In virtual environments complex non-deformable models are normally modelled as 

either a triangular polygon mesh or as a set of NURBS (Non-Uniform Rational B-

Splines).  Due to the computational complexity of calculating the collision point on a 

NURBS surface, polygon meshes are currently the main method for rendering 

complex haptic objects.  Since a polygon has no volume due to its planar nature, 

point-polygon intersection tests do not exist.  Instead it is necessary to use a ray-

polygon collision test to determine whether a collision has occurred.   

 

3.5.1 Types of Collision 

In haptic systems, there are two distinct types of collision that are important: point to 

object collision and object to object collision.  Since the haptic interaction point is 

often stored as a volumeless point, all contact between the user and the world is point 

based.  However, if an object is being manipulated, then that object can then interact 

with other objects and object to object collisions become necessary. 

 

Compared with calculating point to object, object to object collision can be extremely 

processor heavy. 
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3.5.2 Optimisations for Collision Detection 

In environments which have many objects it can quickly become computationally 

prohibitive to test for collisions between all objects, especially if it needs to be done at 

haptic update rates.  To reduce the need for all these tests a number of techniques have 

been developed in order to cull the number of tests that are required.  The two most 

prominent of these techniques are space partitioning and bounding volume 

hierarchies. 

 

Another important optimisation technique involves the coordinate frame that is used.  

It is much more efficient to transform the haptic interaction point from the world 

coordinate frame to the object coordinate frame than to transform the individual 

polygons to the world frame. 

 

3.5.2.1 Bounding Volume Hierarchies 

A bounding volume hierarchy is commonly used with complex polygon meshes to 

reduce the number of expensive polygon collision tests that are required.  A bounding 

volume is a closed volume that completely contains the object or objects that it is 

associated with. Bounding volumes are always simple geometric objects, such as 

spheres or cubes, which have a very simple intersection test.  In this way, if the 

bounding volumes of two objects do not intersect, then it is not possible for the 

objects to intersect and so it can be ignored. 

 

A bounding volume hierarchy is a tree of bounding volumes. At the bottom of the 

hierarchy the size of the bounding volume is just large enough to encompass a single 

object tightly or a small number of polygons.  As you traverse up the hierarchy each 

node contains another bounding volume which tightly encompasses all its children’s 

bounding volumes. 

 

An advantages of using bounding volume hierarchies is that it is possible to do only 

one simple check to determine that the object has not collided; another is that it is 

possible to calculate the maximum time that will be taken to compute a collision.  

Eberly [Eberly00] gives detailed information on how to automatically create and use 

bounding volume trees using a number of different bounding volume types.  
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3.5.2.2 Space Partitioning 

Whereas bounding volume hierarchies are used to subdivide individual objects, space 

partitioning is used to partition the entire world into smaller areas or regions.  BSP 

(Binary Space Partition) trees, Quadtrees and Octrees are all different methods of 

space partitioning based upon the number of regions that they partition the space into.   

 

All objects in the world are located within a specific region in the partition tree based 

upon their position.  As these objects move, their region in the partition tree is also 

updated simultaneously although it should be noted that an object can exist in multiple 

adjacent regions simultaneously.   

 

When trying to determine potential collisions with an object only the objects in its 

region need to be tested so potentially large numbers of collision tests can be avoided. 

 

Raymaekers [Raymaekers03] successfully demonstrated the use of a simple grid and 

octree based space partitioning techniques for use in haptic environments. 

 

Further information on the described space partitioning methods can be found in 

[Eberly00].  

 

3.6 Chapter Summary 

This chapter has introduced the reader to the field of haptic rendering.  It has 

explained the differences between graphical rendering and haptic rendering and has 

described the different types of rendering methods that have been developed for 

rendering the different object formats that are currently in use.  The current haptic 

rendering methods for multi-point haptic systems are also described.   

 

Since this thesis is concerned with the manipulation of objects, it is important that a 

number of physical object properties can be modelled.  Since friction is such an 

important part of manipulation this chapter has introduced the reader to a number of 

different friction models that have been developed outside the field of haptics as well 

as showing how friction is currently implemented in haptic systems.  The residual 
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force and torque in a grasped object are also explained as well as how they affect the 

stability and movement of the object.   

 

Since collision detection is a fundamental aspect of haptic rendering, this chapter ends 

with a short investigation into collision detection as well as some generic 

optimisations that are used to speed up the collision detection process.  

 

In the following chapters, new haptic rendering algorithms will be described.  These 

include the Friction Cone Algorithm, that incorporates friction modelling as an 

integral part of the algorithm, and the Residual Force / Torque Algorithms that allow 

for grasped objects to be manipulated.  These algorithms are all original work that has 

been developed from the concepts described within this chapter. 

 



  63 

4 Implementing Friction 

This chapter presents the Friction Cone Algorithm.  It is original work developed by 

the author that provides a mechanism for modelling friction for use in haptic 

simulations.  It is not a friction model per se, as it can be easily adapted to model a 

number of different friction models, but a mechanism that allows complex friction 

models to be applied to a number of different object types and allows ready 

computation of residual forces in order to facilitate stable haptic grasps [Melder03].  

The Friction Cone Algorithm has the following properties: 

 

1. It is time free as only positional information is required in its formulation. 

2. The output is free from numerical drift. 

3. It is robust to noise. 

4. Its parameters have a simple physical interpretation. 

 

The Friction Cone Algorithm was developed specifically for use in multi-finger haptic 

simulations where objects would be grasped and manipulated.  As such, the output 

vector of the Friction Cone Algorithm is in a form that can easily be applied to a 

suitable movement algorithm.  The basic mechanism is also computationally efficient 

since it is entirely vector based and does not require computationally expensive 

trigonometric functions, or large matrix calculations and the more complex friction 

models can also be implemented in this efficient, vector based manner. 

 

This chapter describes how the Friction Cone Algorithm can be applied to a number 

of different 3D object formats including, parametric objects and polygon meshes as 

well as how bump mapping and surface smoothing can also be applied. 

 

Throughout this thesis vectors are represented in bold and scalars are represented as 

italics. 
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4.1 The Friction Cone Algorithm on a Plane 

A simple adjustment to the god-object algorithm allows us a better technique to 

manage friction. A friction cone can be arranged at the haptic interaction point, 

oriented in the direction of the normal of the contacted surface (see Figure 4.1).  A 

friction cone is simply defined by the friction angle, where fmax is the maximum 

friction force and fnorm is the normal (reaction) force: 

 max

react

f
tan θ

f
µ= =  [4.1] 

The intersection of this cone with a planar surface will define a friction circle since 

the surface is normal to the cone. 

 

Whereas in Zilles' paper [Zilles95], as the haptic interaction point moves so does the 

god-object, the approach used here only moves the god-object if the god-object lies 

outside the circle of friction. In order to determine this, a third point, the surface point, 

is required that is equivalent to Zilles’ god-object which defines the centre of the 

friction circle. To calculate the size of the friction circle we use the depth of 

penetration (d) of the haptic interaction point in relation to the surface as an indication 

of force and the coefficient of friction (µ) that has been previously assigned to the 

penetrated polygon.  The radius (r) of the friction circle is thus given by: 

 r dµ=  [4.2] 

Since the coefficient of friction remains constant, the size of the friction circle is 

proportional to the depth of the penetration. It is possible to have different frictional 

properties for different objects simply by having a different coefficient of friction 

assigned to it so, for example, if a surface has a low frictional coefficient then, for a 

given penetration depth, it will have a smaller friction circle.  If the god-object is 

outside the friction circle then it is necessary to move the god-object onto the 

circumference of the friction circle.  As the god-object moves, energy stored in the 

virtual spring between the haptic interaction point and the god-object is released.  This 

loss of energy is equivalent to the sound and heat that would be generated from 

friction in the real word. 



Chapter 4: Implementing Friction 

  65 

 

Figure 4.1: The friction cone for a planar interaction. : As the haptic interaction point moves the god-

object remains within the friction circle. 

 

 

Figure 4.2: The haptic interaction point has now moved such that the god-object is now outside of the 

friction circle. The god-object must now be repositioned onto the edge of the friction circle. 

 

The Friction Cone Algorithm is composed of the following steps and is active whilst 

the haptic interface point is inside the surface. It assumes that the god-object (G) has 

already been placed and now needs updating: 
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1. Calculate the depth of penetration (d) of the haptic interaction point (H) below 

the surface of the polygon as in equation [4.3].  

 

 ( )d = −H G ni , where n is the unit normal of the surface. [4.3] 

 

2. Calculate the location of the surface point (S). The surface point lies on the 

contacted surface and is defined as the minimum distance between the haptic 

interaction point and the contacted surface.  This calculation is shown in 

equation [4.4]. 

 

 d= +S H n  [4.4] 

 

3. A circle can then be considered as the intersection of the friction cone with the 

surface polygon.  The radius of this friction cone circle (r) is given by equation 

[4.2]. 

 

4. The distance between the surface point and the god-object (Ds-g) is then given 

by equation [4.5].  This distance is then compared to the radius of the friction 

circle.[4.5] 

 

 = −SPGOD G S  [4.5] 

 

5. If the god-object is outside the friction circle then update the god-object’s 

position to be on the perimeter of the friction circle using equation [4.6], 

otherwise leave the god-object in place. 

 

 
( )

new r
−

= +
SPGO

G S
G S

D
 [4.6] 

 

6. The response force (Fresp) can now be calculated based upon the vector from 

the haptic interaction point to the god-object and will be proportional to the 

surface stiffness (k). 
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 ( )resp k= −
new

F H G  [4.7] 

 

Thus when the god-object is outside the friction cone it will ‘jump’ to the closest point 

on the circumference of the friction circle, shown in Figure 4.2, and provides the 

equivalent to static friction. In its current form, the coulomb model of friction is being 

modelled (Figure 3.4(b)). 

 

4.1.1 Modelling Static, Dynamic and Viscous Friction 

More complex friction models can be simulated by tracking the state of the system.  

For the stick-slip friction model shown in Figure 3.4(d), the system has two states: 

stuck (static) and slip (dynamic).  Unlike the coulomb model of friction, a 

characteristic of this model is that the coefficient of static friction (µs) is greater than 

the dynamic friction coefficient (µd).   

 

A state change from stuck to slip occurs the first time that the god-object needs to be 

moved.  When this occurs it is necessary to replace the static friction coefficient with 

the coefficient of dynamic friction (µd) in equation [4.2] and to reposition the god-

object onto the edge of the new friction circle as per equation [4.6].  To affect a state 

change from slip to stuck it is necessary that the angle between the vector from the 

haptic interaction point to the god-object and the surface normal (the angle θ in Figure 

4.2) is less than the coefficient of dynamic friction (µd).  Using the Friction Cone 

Algorithm, this will occur when the god-object does not require moving. 

 

 

Figure 4.3: State transition diagram between dynamic (coloumb) and static friction conditions.  

Changes in the angle at the haptic interaction point (θ), between the god-object and  the surface point 

triggers a state change. 

 

STUCK 

use µs 
SLIP 

use µd 

θ  > tan
-1

 µs 

  

θ  < tan
-1

 µd θ  > tan 
-1

 µd 
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Viscous friction can only occur when the system is moving and it is proportional to 

the velocity of movement in the opposing direction.  To model viscous friction it 

becomes necessary to track the velocity of the god-object.  The friction due to the 

viscous component can then be calculated and this is then added onto the other 

frictional forces.  Using the Friction Cone Algorithm this can be achieved by 

increasing the size of the friction cone based upon the current speed of the god-object 

i.e. by changing the friction coefficient used in equation [4.2].   

 

If µv is the coefficient of viscous friction and s is the speed that the god-object is 

travelling, µvd , the friction coefficient incorporating both the dynamic and viscous 

component, can be calculated as follows: 

 

 ( )vd d vsµ µ µ= +  [4.8] 

 

The friction model shown in Figure 3.4(c) can be modelled by using µs (static friction 

coefficient) in place of µd (dynamic friction coefficient) in equation [4.8]. 

 

4.1.2 Modelling Arbitrarily Complex Friction Models 

Using the Friction Cone Algorithm mechanism, it is possible to accurately model 

complex friction models provided that it can be expressed in a Friction vs. Velocity 

graph as used in the friction models shown in Figure 3.4.  It is necessary to determine 

the number of states that are required, what causes these states to transition and how 

the size of the friction cone changes when in each of these states. 

 

4.2 Applying the Friction Cone Algorithm to Polygon 

Meshes and Curved Surfaces 

In order for the Friction Cone Algorithm to be a useful tool for haptic rendering, it is 

necessary that it can be applied to complex objects.  Polygon meshes and parametric 

objects are methods that are used to represent complex objects and it is possible to 

apply the Friction Cone Algorithm to haptically render these different surfaces. 
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In order to use the Friction Cone Algorithm for haptic rendering, it is necessary to be 

able to find the normal of the surface at the point where the initial collision occurred 

as well as the normal at the position of the god-object. 

 

4.2.1 Simple Parametric Objects 

Parametric objects have surfaces that can be described through a mathematical 

equation and include planes, spheres, cones, cylinders and tori.  With the exception of 

the plane, a characteristic of parametric surfaces is that they are curved.   

 

Applying the Friction Cone Algorithm to a parametric surface requires the same steps 

used for a plane with two modifications.  The first modification requires the 

generation of a plane when the god-object is initially placed.  The second 

modification affects the algorithm when the god-object is moved. 

 

 

 

Figure 4.4: a) The god-object needs to be repositioned back onto the sphere’s surface. b)  The god-

object has been repositioned onto the sphere and the new temporary plane has been calculated. 

 

A sphere with centre ccircle and radius rcircle (see Figure 4.4) is used as an example 

although the same method is applicable to all types of simple parametric objects. 

Upon initial placement of the god-object (G) a temporary plane needs to be created: 

 

1. Define a plane (using normal n and distance from origin D) that passes 

through the god-object.   

 

= Original position of god-object 

= New Position of god-object 

= Temporary plane for god-object to 

ccircle rcircle 

a) b) 
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 circle= −v c G  [4.9] 

 =
v

n
v
 [4.10] 

 circleD r=  [4.11] 

 

2. The Friction Cone Algorithm is then applied as described for the plane until 

the god-object must be moved.  In this case the god-object is repositioned on 

the plane as before but it then needs to be repositioned back onto the 

parametric surface.  For the sphere the new position for the god-object is 

calculated as follows:  

 

 circle plane= −v c G  [4.12] 

 =
v

n
v
 [4.13] 

 circle circler=G n  [4.14] 

 

3. The temporary plane that the Friction Cone Algorithm is applied to must then 

be recalculated as described in equations [4.12], [4.13] and [4.14]. 

 

In order to apply the Friction Cone Algorithm onto parametric objects in this way it is 

necessary to be able to calculate where the god-object should be placed and this 

information is usually returned from a ray-object intersection test.  Using this 

approach, the Friction Cone Algorithm has been applied to parametric spheres, 

cylinders, cones and torii. 

 

When traversing very tightly curved parametric objects it may appear that there is a 

potential issue with stability.  This would occur when the radius of the curve being 

traversed is very small which may cause the direction of the force applied to the user 

to change greatly when the god-object is repositioned.  In order for this to happen the 

radius of the curve will need to be close to the sensor resolution of the haptic device 

and as such the force that will be applied to the user will also be very small.  Further 

to this, because the god-object always lags behind the haptic interaction point, the 

haptic interaction point will most likely exit the contacted object ending any forces 
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that were being applied.  Because of these reasons, the author does not see this as an 

issue that warrants concern.  

 

4.2.2 Single NURBS surfaces 

NURBS (Non-Uniform Rational B-Splines) are a generalised parametric means of 

describing an object’s surface, are used extensively in CAD, and are ideally suited for 

the creation of ‘organic’ objects that feature many curved surfaces.  Methods 

proposed by Thompson and  Cohen [Thompson99] and Patoglu and Gillespie [Patoglu05] 

can be applied to the haptic rendering of NURBS surfaces but due to the highly 

mathematical nature of this type of surface these methods are computationally 

expensive.  This is due to the fact that there is no simple solution to finding where a 

ray collides with the NURBS surface which is necessary for calculating the depth of 

penetration and surface normal.  The only way to calculate this point is to use an 

iterative method that will converge on the desired location.  However, work done with 

Russell [Russell04] has applied the Friction Cone Algorithm to the rendering of a 

single NURBS surfaces with success although, due to the comparative inefficiency of 

the ray-NURBS intersection tests, further work allowing for crossing over onto 

adjoining NURBS surfaces was not undertaken.  

 

NURBS surfaces are rendered in the same way as the simple parametric objects.  

Upon initial contact, a plane must be placed at the contact point where the normal on 

the surface at this point can be determined from the equations defining the NURBS 

surface.  When the god-object needs to be repositioned it should first be repositioned 

on this plane and then moved back onto the surface.  This requires that the point of 

intersection between a ray and the surface is found where the ray originates at the 

haptic interaction point in the direction of the currently repositioned god-object. 

 

4.2.3 Polygon Meshes  

Polygon meshes are perhaps the most common means of representing a 3D model and 

as such a large number of haptic rendering methods exist for rendering polygon 

meshes.  Unlike parametric objects, polygon meshes are constructed from planar faces 
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and so it becomes necessary to be able to haptically render edges and corners.  How 

the god-object transitions across these polygon boundaries must also be determined. 

 

Previous haptic surface rendering algorithms transition polygon boundaries by 

determining where the haptic interaction point is in relation to the surface polygons, 

edges and vertices [Zilles95] [Ho99]. However, in these implementations it is always 

possible to determine the location of the haptic interaction point from the location of 

the god-object and vice-versa.  Since the Friction Cone Algorithm does not have this 

property it is necessary to use a novel approach to boundary crossing. 

Face Directed Connection Graphs (FDCG) store information about how faces 

are attached to each other i.e. for any given face, it is possible to quickly determine all 

the connecting faces.  Using a Face Directed Connection Graph and by examining the 

position of the god-object as it moves along a surface, it is possible to determine when 

the god-object crosses a plane defined by a connected polygon’s plane equation.  This 

is done by pre-computing and storing the Voronoi like regions [Schinner93] 

associated with the mesh in the Face Directed Connection Graph and determining 

when the god-object has traversed from one region to another. 

 

Figure 4.5 shows the FDCG for a simple polygonal cube made up of six faces.  By 

storing the D value (perpendicular distance from the plane containing the polygon to 

the object frame origin) for each face in the face structure (effectively turning it into a 

plane since each face also stores its normal vector) and by incorporating the vertices 

that are shared between the faces it is possible to use FDCGs in a god-object based 

system to detect when the god-object transitions a polygon boundary.  Since the 

vertex data of the connected faces is stored in the graph, finding the equation of any 

polygon edge is a simple matter.  FDCGs can be pre-computed directly from the mesh 

data where the normal and D value for each face can be easily calculated. 
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Figure 4.5: A simple cube consisting of six faces and its associated Face Directed Connection Graph 

 

Storing a polygon mesh requires that the faces and vertices are stored in an object 

structure.  Implementing a FDCG requires that the connections between the faces are 

known and since the connection between two polygons is an edge it is possible to 

store the FDCG in the object structure to avoid data duplication. 

 

The connection structure must contain the following: 

SharedVertex(x2) - the two shared vertices 

Face(x2) - the two connected faces 

EdgeVector - normalised vector from SharedVertex(1) to 

SharedVertex(2) 

ConnectionType - connection type (is either convex, concave or coplanar) 

VoronoiPlane(x2) - see below for explanation 

EndPlane(x2) - see below for explanation 

 

It is also necessary to modify the face and vertex structure. The face structure must 

also store the following information: 

FaceNormal - the normal of this face 

ConnectionArray - array of connections to this face 

 

The Vertex structure must also contain the following: 

ConnectionArray - array of connections that share this corner 
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F3 F2 

F5 

F4  
 
   
 

 
  

 
 

 

 
 
 

  

 

 

 

 
  
 

 

 

 

 

 

 

 

 

F1 = Top face 
F2 = Bottom face 
F3 = Right face 
F4 = Left face 
F5 = Front face 
F6 = Back face 
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The Voronoi planes in the connections are associated with the two connected faces 

such that VoronoiPlane(1) is the Voronoi plane for Face(1) and VoronoiPlane(2) is 

the Voronoi plane for Face(2).  The Voronoi plane is simply a plane that passes 

through the two, shared vertices with a normal perpendicular to the normal of the 

associated node, a two-dimensional representation is shown in Figure 4.6:. 

 

Figure 4.6: Two connected faces and their associated Voronoi regions. 

 

Each Voronoi plane requires a normal and a perpendicular distance to the origin or 

‘D’ value which are calculated as follows where p1 and p2 correspond to shared 

vertices one and two, respectively and nface is the normal of  the associated polygon 

face. 

 

 3 face 2 =p n +  p  [4.15] 

 1 2= −
1

v p p  [4.16] 

 2 1 3= −v p p  [4.17] 

 = ×
1 2

n v v  [4.18] 

 Voronoi plane normal =
n

n
 [4.19] 

 Voronoi plane D ( )= −
1

v ni  [4.20] 

 

Similarly, the end planes are associated with the two shared vertices.  Each of the 

shared vertices lie on an end plane and the normal is either the edge vector or the 

negative edge vector of the connection. 

= Voronoi Region associated with the polygon faces 

Face 2 

Face 1 

= Face normal  = Voronoi Plane normal 
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When computing the Voronoi and end planes, it is important to ensure that a 

consistent winding is used in the mesh data structure and that this is translated into the 

connections in the FDCG otherwise the direction of the computed normals for the 

Voronoi planes may be incorrect leading to unpredictable transitions between the 

affected polygons. 

 

4.2.4 Crossing Polygon Boundaries 

As the god-object moves across the object’s surface there are a number of state 

changes that can occur, i.e. moving from a face to an edge etc.  These are shown in 

Figure 4.7. 

 

Figure 4.7: State transition diagram showing how a god-object’s state changes as it moves across the 

surface of a polygon based object. 

 

There are two types of transition and these are determined by the apparent number of 

degrees of freedom that are affected.  The degenerate transitions occur when the 

available degrees of freedom decreases and include free-space (3DOF) to face 

(2DOF), face to edge (1 DOF) and edge to vertex (0 DOF).  These transitions are 

determined by how the god-object moves.  The regenerate transitions occur when the 

apparent available DOF increases.  These include vertex to edge, vertex to face, edge 

to face and vertex/edge/face to free-space and are determined by the movement of the 

haptic interaction point. 

 

The degenerate transitions only need to be checked when the god-object is moved 

whereas the regenerate transitions need to be checked every time the haptic 

interaction point moves. 

 

F 

FS 

E V 

FS = Free-space  F = Face  E = Edge  V = Vertex 
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4.2.4.1 Free-Space to Face Transitions 

This is determined by the collision detection algorithm and will define the initial 

active face. 

 

4.2.4.2 Face to Edge Transitions 

A face to edge transition will occur when the god-object crosses one of the Voronoi 

planes associated with the face, i.e. it moves into the Voronoi region associated with 

the edge.  This can be achieved by comparing the distance of the god-object to the 

Voronoi planes stored in the connections that are attached to the currently active face.  

Since the Voronoi planes are generated from polygons with consistent winding, it is 

easy to determine which side of the Voronoi planes the god-object is on based upon 

the sign of the calculated distance.  If it has been determined that a Voronoi plane has 

been crossed, then the associated connection has been transitioned and the 

corresponding edge is made active (see section 4.2.5 for using the Friction Cone 

Algorithm on edges).  The god-object is then repositioned on the edge where the 

transition occurred. This process can be seen in Figure 4.8 . 

 

 Figure 4.8: God-object crossing from a face to an edge. 

 

4.2.4.3 Edge to Vertex Transitions 

An edge to vertex transition occurs when the god-object moves off the end of the edge 

i.e. the god-object crosses an associated end plane.  If the god-object has passed an 

end plane, then the corresponding vertex is made active and the god-object is 

repositioned at the active vertex.  

GO on Polygon 1 GO crosses voronoi plane 

associated with the edge 

P2 

P1 

P2 

P1 

= God-object (GO)  

= Old God-object position 

 

= Voronoi Region associated with polygon 1 

= Voronoi Region associated with polygon 2 

P1 

P2 

GO is repositrioned on the 

edge 
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4.2.4.4 Face to Free-Space Transitions 

A face to free-space transition can be determined by the distance of the haptic 

interaction point to the face plane; if the distance is positive, then the haptic 

interaction point has transitioned out of the plane and is thus in free space. 

 

4.2.4.5 Edge to Free-Space Transitions 

There are two types of edge to free-space transition: when the edge is acute and 

convex, and when it is not. 

  

Figure 4.9: Transitioning from a convex edge into free space 

 

Figure 4.9 shows the position of the haptic interaction point and the god-object when 

an acute, convex edge is first made active (i.e. the edge has been made active but no 

transitions have yet been determined).  If the haptic interaction point is in front of one 

connected face plane and behind the other face plane then an edge to free-space 

transition will occur.  

 

The second edge to free-space transition occurs when the haptic interaction point is in 

front of both of the connected face planes at the same time. 

 

4.2.4.6 Vertex to Free-Space 

A vertex to free-space transition occurs when the haptic interaction point is in front of 

all the connected planes. 

 

= God-Object attached to edge 

= Haptic Interaction Point 

= Face normal 

= Spring that force 

   is directed along 
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4.2.4.7 Edge to Face 

An edge to face transition will occur when the haptic interaction point moves into a 

face Voronoi region, at which point the corresponding face is made active.  However, 

if the current edge is convex, it may be possible for the haptic interaction point to be 

behind both Voronoi planes stored in the connection.  In this case, the face plane that 

the haptic interaction point is closest to is made active. In either case, the god-object 

does not need to be repositioned.  Figure 4.10 shows the edge-face transition for a 

non-convex case. 

 

Figure 4.10: Haptic interaction point entering a shaded region in this non-convex example causes an 

edge to face transition to occur. 

 

4.2.4.8 Vertex to Edge 

This transition will occur if the haptic interaction point moves into the edge Voronoi 

region, i.e. it is behind both face planes that are stored in a connection connected to 

this corner. 

 

4.2.5 The Friction Cone Algorithm on an Edge 

A slight modification to the Friction Cone Algorithm is required in order to allow it to 

work on an edge.  When in contact with a face, the surface point is defined as the 

minimum distance between the haptic interaction point and the contacted surface and 

can be easily calculated since the face normal is known, see equation [4.4]. However, 

= God-Object 

= HIP when edge should be active 

= HIP when face should be active 

= Face normal 

=Area where face  

  should be active 
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in the case of an edge there is no normal to use so an alternative method is required to 

find the surface point.  Equations [4.21]  through [4.24] and Figure 4.11 show how to 

calculate a point on the edge that is perpendicular to the haptic interaction point which 

can then be used to define the surface point. 

 

 

 Figure 4.11: Calculating the surface point when on an edge 

 

Two vectors, ve and vw are defined as: 

 

 2 1e = −v p p  [4.21] 

 1w =v H - p  [4.22] 

 

By projecting vw onto ve the surface point can be calculated as: 

 

 w e

e e

b
 
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 

v v

v v

i

i

 [4.23] 

 1 eb=S p + v  [4.24] 

 

Once the surface point has been determined, the distance between the surface point 

and god-object can be calculated as before (see [4.5]) and, if necessary, the god-object 

should be moved as per [4.6]. 

 

4.2.6 Smoothing Polygon Transitions Using Force Shading 

In order to smooth polygon transitions, force shading can be implemented with the 

Friction Cone Algorithm.  Force shading is analogous to graphical Phong shading in 

that it modifies the normal across the face of the polygon to make it appear smooth 

Vw 

P1 S 

Ve 

H 

P2 

p1, p2 = Vertices defining the edge 

H = Haptic Interaction Point 

Ve = Edge vector as defined in Section 4 

S = Surface Point 
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instead of faceted.  Unlike the implementations described by Ho [Ho99], Zilles 

[Zilles95] or Ruspini [Ruspini97], because the Friction Cone Algorithm does not 

return the normal force of a virtual contact, but the normal and frictional forces a 

novel approach to polygon smoothing is required.  Instead it is necessary to 

interpolate the surface normal and use the interpolated normal to rotate the output 

force vector.  In order to achieve this, the vertex definition as defined above for use 

with FDCGs must be modified to include a normal at the vertex. The actual Friction 

Cone Algorithm remains unchanged.   

 

Figure 4.12 shows a 2D example of how the normal should be interpolated along a 

surface and the method described by Ho et al. [Ho99] to calculate the interpolated 

normal is repeated here for convenience. 

 

Figure 4.12: 2D example of how the normal should be interpolated.  The dotted line is the apparent 

surface that is felt. 

 

Provided that the haptic model is made from triangles, during haptic rendering the 

vertices of the unshaded polygon are retrieved and the contacted polygon is 

subdivided into triangles as shown in Figure 4.13. 
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Figure 4.13: A contacted polygon and the associated sub-triangles and normals (Adapted from 

[Ho99]). 

From [Ho99], the interpolated normal (nc) at the contact point (the god-object) can 

then be calculated by averaging the vertex normals (ni) weighted by the areas (Ai) of 

the three subtriangles, i.e: 
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Once the interpolated normal has been determined, the output force (fnew) (containing 

any frictional components) can be calculated as follows: 

 

 c cur cur= +1f n f f , where fcur is the current force vector [4.26] 

 new cur

 
=   
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f
f f

f
 [4.27] 

 

A beneficial side effect when using this method of force shading is that it no longer 

becomes necessary to transition from one face to an adjoining face via an edge since, 

at the point of transition, the haptic interaction point will already be in the adjoining 

face’s Voronoi region. 
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= Normal 

= Vertex 
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However, this method of force shading may not be ideal as it causes the entire object 

to have a ‘rounded’ feel.  In many situations it is probably preferable to keep large flat 

areas correctly rendered and only apply force shading when approaching an edge.  

This can be achieved by having a ‘region of activation’, a fixed distance from the 

polygon’s edges demonstrated in Figure 4.14.  If this approach is used the interpolated 

normal is calculated by combining a ratio of the normals of the two connected 

polygons based upon the distance from the polygon’s edge. This calculation is shown 

in equations [4.28] and [4.29] with Distedge denoting the distance from the shared 

edge, l the length of the activation region and n1and n2, the unit normals of the current 

polygon and the polygon being approached, respectively. 

 

 
edgeDist

l
α =  [4.28] 

 1 2 (1 )c α α= + −n n n   [4.29] 

 

Figure 4.14: Force shading using ‘regions of activation’ method.  Interpolation is only applied when 

the god-object is inside a region of activation. 

 

It is possible that the god-object may lie within two or more regions of activation.  In 

these cases it is necessary to interpolate the normal for each region of activation in 

series, i.e. calculate the interpolated normal for the first region as described above, 

and then use the interpolated normal just calculated in place of n1 for the subsequent 

regions. 

= 1 region active 

= 2 regions active 

= activation region boundary 
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4.2.7 Height Mapping 

Bump mapping is a graphical technique that can be used to simulate small features 

over an object’s surface and works by determining the normal used for the lighting 

calculation from a 2D texture map.  Haptically, bump maps can be used to portray 

surface texture and Ho et al. [Ho99] describes a method to haptically render bump 

maps by taking into account the normal and height of each bump.  They also describe 

methods to allow the haptic interaction point to collide with the ‘bumps’ on the bump 

mapped surface and not just the flat surface.  However, most haptic interfaces are 

unable to provide the high spatial frequencies needed to render bump maps correctly 

[Wall00b] but this level of realistic modelling and added computational complexity is 

not necessary to convincingly render bump maps especially since the ‘bumps’ on 

surfaces are only felt when moving along the surface.  Instead, it is possible to 

convincingly render a bumpy surface by using a ‘height map’ instead of a bump map.  

The pixels in the height map correspond to a height value that should be added or 

subtracted from the contacted surface.  By determining the value of the height map at 

the contact point (god-object) this value is added to (in the direction of) the force 

vector output from the Friction Cone Algorithm to simulate the bumps. 

 

4.3 Chapter Summary 

This chapter has described the Friction Cone Algorithm to the reader.  It has been 

shown how the Friction Cone Algorithm can be used to simulate different friction 

models and it has also been demonstrated how it can be applied to a number of 

different 3D representations including polygon meshes, parametric objects and 

NURBS surfaces.  Since the Friction Cone Algorithm incorporates friction into the 

actual contact algorithm, when using the Friction Cone Algorithm, it is no longer 

necessary to add in any extra lateral forces to simulate friction.  It can also be seen 

that the Friction Cone Algorithm is entirely vector based which makes it both easy to 

implement as well as very processor efficient.  Further to this, its parameters have a 

simple physical interpretation.  Another feature of the Friction Cone Algorithm is that 

it is time free since only positional information is required in its formulation.  This is 

important for two reasons: since it requires no time information (such as velocity) 

there are no issues when travelling at near zero speeds when simulating stick-slip 
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friction (unlike other implementation) and the output is guaranteed to be free from 

numerical drift over time. 
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5 Multi-Finger Manipulation Physics 

With multiple points of contact it is possible to grasp and manipulate an object in a 

natural manner.  This chapter is concerned with the issues that arise when using 

multiple, discrete haptic devices as well as the physics involved to manipulate a 

grasped object.  A method is given to calculate the transformation matrices required to 

allow multiple, discrete devices to work in the same coordinate space and the 

Residual Force and Torque Algorithms are described which allow a grasped object to 

be manipulated in a natural manner.  Methods are also given that allow an object to be 

manipulated naturally when only two points of contact are made. 

 

5.1 Possible Types of Grasp with the Hardware Used 

 

Figure 5.1: The three finger Phantom configuration used for conducting this research.  This setup was 

chosen as it maximises the available workspace for translations and rotations of virtual objects without 

the mechanical arms colliding.   This is the right hand setup. 

 

Due to the hardware that was used for this research, methods were only investigated 

for precision grip manipulations.  Within the subset of the precision grasps there are 

three distinct ways in which an object can be manipulated: Single finger, two finger 

and three or more fingers.  It is necessary to consider these three types of interactions 

as they represent the various levels of stable grasp that can be achieved.  Section 2.6.1 
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and Section 3.3 include more information upon the various types of grasps that can be 

made. 

 

5.1.1 Types of Grasps 

The term ‘stability’ can have two meanings in the context of grasp: spatial grasp 

stability and contact grasp stability.  Spatial grasp stability is the ability to return a 

grasped object to its static equilibrium when its position is changed.  This meaning of 

stability is directly related to the manipulation of the object.  Contact grasp stability is 

the ability to maintain the contact against any external forces or disturbances that are 

also acting on the object.  When grasp stability is discussed in this thesis it is the 

former meaning of stability that is used. 

 

A lot of research has been done on stable grasps in the field of robotics as well as in 

psychology.  For spatial grasp stability, Salisbury [Salisbury82] defined a grasp 

matrix quantity and showed that provided that this matrix has sufficient rank then the 

contact points can apply force and torques in arbitrary directions whilst maintaining a 

stable spatial grasp (this type of grasp is said to have achieved force closure).  

Salisbury only categorises a grasp as being (spatially) stable or unstable and does not 

distinguish between the different types of stable grasps.  It has also been shown that 

the addition of friction at the points of contact is beneficial since it allows a spatially 

stable grasp to be achieved with fewer contact points then would otherwise be 

required.  For contact grasps Cutkosky and Wright [Cutkosky86] analysed contact 

grasp stability with human like fingertips and show that the visco-elastic nature of 

finger tips enhanced contact stability.  [Montana91] showed that there were a number 

of factors that affected grasp stability and how it is not possible to talk of a stable 

grasp without considering both the spatial and contact grasp stabilities simultaneously.  

He shows that there are a number of factors that affect contact grasp stability, namely, 

object curvature, contact size (i.e. flat fingertips versus pointed contacts) and distance 

between contacts. By looking at the contact kinematics a model of the grasp dynamics 

and hence the grasp stability can be created. 

 

In terms of spatial grasp stability, a fully stable grasp allows an object to be 

manipulated in six degrees of freedom, three translational and three rotational.  With 
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the inclusion of translational friction at the contact points it is possible to create a fully 

stable grasp, with six degrees of freedom, with only three non-collinear points of 

contact.  With the addition of torsional friction at the contact points, two contact 

points can be used to achieve a stable grasp with two rotational and three translational 

degrees of freedom.  With a single point of contact only a ‘pole balance’ or a single 

finger lift, can be achieved.  The pole balance is an unstable grasp and has no 

controllable rotational or translational degrees of freedom.  Although the single finger 

lift allows for three translational degrees of freedom, in the absence or torsional 

friction at the contact point, there are no rotational degrees of freedom.  In the absence 

of gravity or other external forces, only a fully stable grasp can be used to achieve full 

rotational and translational degrees of freedom. 

 

5.2 Calibration of Multiple Discrete Devices 

Since a number of discrete, single finger haptic devices are used instead of a single 

multi-finger device it is necessary to calibrate all the haptic devices into a single 

coordinate frame.  In order to achieve this calibration, one device needs to be 

designated as the fiducial.  It is assumed that it is already known how to transform the 

fiducial’s coordinate frame into the coordinate frame of the virtual world. 

 

The method described here can then be used to calibrate any number of devices with 

respect to the fiducial. Note, the end point position data that is required needs to be 

four elements long since a 4x4 homogenous transform is calculated.  This can be 

achieved by outputting x, y, z, 1 for each logged entry. 

 

1 Assume 
F
T (θF) is the transform of the fiducial based on the three measured 

angles θF.  Similarly, 
N
T (θN) is the transform of the other devices(s). 

 

2 End point position data is then gathered by holding the device endpoints 

together and moving them around. 
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3 For the fiducial, the gathered points in the world coordinate frame is given by: 

 

 ( )W F W

world F F F F FP T T P TPθ ′= =  [5.1] 

 

 where:  PF = Points in the fiducial coordinate frame 

 W

FT  = Transform to get these points into the world coordinate frame 

 

4 Similarly, the gathered points for the other device is given by: 

 

 ( ) 'W N W

world N F N N NP T T P TPθ= =  [5.2] 

 

 where:  PN = Points in the ‘other’ coordinate frame 

 W

NT = Transform to get these points into the world coordinate frame 

 

5 By adding a correction matrix (A) we have: 

 

 ( ) ( )'

'

W W W

world F F W N NP TP A TP= =  [5.3] 

 

6 The correction matrix can then be found in the least squares sense by using 

singular value decomposition, left division if available or pseudo least squares, 

i.e. 

 

 ( ) ( ) 1

' '/W W N W T T N

W F F N W F F N N N WA T P P T TP P P P T
−

= =  [5.4]  

 

where: 1'

'

−= TT W

N

N

W and ' / ' indicates left matrix division (a numerically robust 

method of calculating PF / PN ).  The third equality is the pseudo least 

squares version. 

 

7 If the devices are perfectly calibrated then A will be a 4x4 identity matrix. 
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By using the described calibration method, the end points of both devices will be 

mapped to the same position.  Figure 5.2 contains the Matlab implementation of the 

above calibration method.  The CalibDataFile contains six columns containing the 

raw x, y, z values of Phantom0 (fiducial) followed by the raw x, y, z values of 

Phantom1.  T1 is the calibration matrix generated by this set of data. 

 

function [T1] = calibratePhant1(CalibDataFile) 

%Calibrates 1 phantom to the Fiduccial 

 

%Load in the supplied file name 

CalibData = load(CalibDataFile); 

 

% load in data 

phm0 = CalibData(:,1:3); 

phm1 = CalibData(:,4:6); 

 

% add in extra column of 1s to make homogeneous 

len = length(phm0); 

 

pm0=[phm0 ones(len,1)]; 

pm1=[phm1 ones(len,1)]; 

 

% calculate new Transform 

T1=pm0'/ pm1'; 

 

Figure 5.2: The Matlab implementation of the calibration routine described. 

 

In order to use this algorithm, it is necessary that both endpoints are kept constantly in 

exactly the same place.  In order to achieve this, a tool was made that replaces both 

endpoints for the Phantoms and was precisely engineered to an accuracy of < 0.1mm. 

 

5.3 Manipulating Objects - The Residual Force and Torque 

Algorithms 

In order to be able to manipulate an object it is necessary to be able to determine all 

the forces and torques that are acting on the object.  These forces will include finger 
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contact forces as well as environmental forces such as gravity.  Finger contact forces 

can be generated using either the Friction Cone Algorithm as described in Chapter 3 

or by other means although the descriptions assume that the Friction Cone Algorithm 

was used to generate the contact forces. 

 

5.3.1 The Residual Force and Torque Algorithms 

Given that a collision algorithm has identified a number of points of contact and the 

estimated instantaneous contact forces have been calculated, it is now necessary to 

estimate residual forces and torques on the object. Translation and rotation of the 

object will then be subject to these residual forces and torques until a state of static 

equilibrium is reached. The simplest method is to sum torques and forces at the 

object’s centre of mass and integrate residuals to achieve the object’s rotational and 

linear velocity and subsequently the object’s orientation and position. 

 

 

Figure 5.3: Force estimates for an object with three contact points. f1, f2 and f3 are the force vectors 

applied to the object by the individual contact points and r1, r2 and r3 are the vectors from the centre of 

mass to the contact point. 

 

Figure 5.3 shows the force estimates based on three friction cones due to a three point 

contact of an object. Residual forces and torques at the Centre of Mass of the body 

can then be calculated. 

 

The Residual Force Algorithm calculates the residual force in the object based upon 

all forces that are being applied to the object.  These forces include, but are not 

limited to, forces generated from the Friction Cone Algorithm due to contact as well 

as gravity.  Similarly, the Residual Torque Algorithm calculates the residual torque in 

the object. 

CofM 

r1

r2 

r3 

f2 

f3 f1 

mg 
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Residual forces and torques at the Centre of Mass of the body are given by: 

 

 
1i toN=

= ∑ i
F f  [5.5] 

 
1i toN=

= ×∑ i iT r f  [5.6] 

 

If the forces and torques are in a world coordinate frame then the resulting 

accelerations can be estimated according to Newton and Newton-Euler equations.  If 

this is not the case, then it is necessary to transform the residual force and torque into 

the world coordinate frame.  The accelerations can then be calculated as follows:  

 

 
m

=
F

a  [5.7] 

 ( )1A AJ J−= − ×ω T ω ω�  [5.8] 

 

where A T

pJ RJ R=   

J is an inertial tensor diagonal matrix, Jp gives the principal moments of inertia 

about a coordinate frame at the object centre of mass with respect to the 

body’s principal axes, and R is a rotation matrix to rotate this coordinate frame 

into the world coordinate system {A}. 

 

We consider in the following the case where ω is small or that the principal inertias 

are not widely different and hence the second term can be neglected, thus: 

 

 1 T

PRJ R T−≈ω�  [5.9] 

 

Since Jp is a constant diagonal matrix, its constant inverse can be calculated outside 

the main control loop of the haptic interfaces. 

 

To calculate the resulting translation and rotation of the virtual object the final process 

must integrate the angular and linear acceleration. 
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Given the loop time (∆t) of the control algorithm the velocity (v) and position (p) 

estimates can be arrived as follows: 

 

 t= + ∆oldv v α  [5.10] 

 t= + ∆oldp p v  [5.11] 

 

The angular velocity (ω) and orientation (R) estimates are: 

 

 t= + ∆oldω ω ω�  [5.12] 

 R I S t∆ = + ∆  [5.13] 

 oldR R R= ∆  [5.14] 

 where: 

0

0

0

z y

z x

y x

S

ω ω
ω ω
ω ω

 −
 

= − 
 − 

 

  and I is the identity matrix 

 

Since [5.13] is a small angle approximation of rotation it is necessary to normalise R, 

i.e. if R is composed of three unit vectors R=[n o a]: 

1. Set a = a / | a |, 

2. Set n perpendicular to a and o and then normalise, 

i.e. n = o × a , n = n / | n | 

3. Set o perpendicular to a and n with o = a × n 

 

5.3.2 Analysis of the Rotation Method 

Expanding equation [5.8] gives: 

 

 1 1T TRJ R T RJ R− −= − ×ω ω ω�  [5.15] 

 

In normal use we can expect ω to be small so ignoring the second term has no 

noticeable effects.  This is because the second term is concerned with effects at high 

rotational velocity, such as in a gyroscope.  Inclusion of this term allows the Coriolis 
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force (a torque perpendicular to the axis of rotation) to be generated when a spinning 

object is tilted. 

 

5.3.3 Two Finger Grasps and Soft Finger Contact Modelling 

Where a multi-contact point haptic interface is used to grasp a virtual object at two 

points it will not be possible to rotate that object along an axis joining the two god-

objects. In this case the three point contact grasp algorithm can still be used to rotate 

the object in the direction of the remaining orientation degrees of freedom.  To 

achieve a rotation in the plane perpendicular to this original grasp axis, either the two 

finger grasp must be remade, or the object reoriented in a non-intuitive way to allow 

rotation in this axis.  In the real world, a two finger grasp of an object does allow free 

rotations in all three degrees of freedom because friction between the finger pads and 

the object can be used to apply a torque around this axis. Trying to simulate this 

torsional friction between the object and the finger tips is known as soft finger contact 

modelling.   

 

Two mechanisms can be used to simulate rotations about this axis due to finger pad 

torsional friction. Since, in real interactions, the finger pad area can be considered 

approximately proportional to the applied pressure, we can use the area of the friction 

circle as an approximate indicator of the available frictional torque available to allow 

these finger pad determined rotations.  If the Friction Cone Algorithm is not used to 

generate the contact force, then a proportion of the force normal to the contacted 

surface can be used.   

 

5.3.3.1 Instrumented Gimbals 

If a Phantom with an instrumented gimbal is used for one or more of these contact 

points then a coordinate frame can be established on the object such that the x-axis is 

along the line joining the two god-objects, the y-axis is along the normal joining the 

centre of mass to this line, and the z-axis is perpendicular forming a right handed 

coordinate frame. Once the area of the friction circle (A) exceeds a critical value (Acrit) 

the gimbal pitch measurement can be used to rotate this coordinate frame around the 

x-axis and hence update the rotation matrix and the position vector defining the 
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object’s centre of mass. Resultant torques and forces can then be used to update 

orientations and positions around the other axes of the newly defined coordinate 

frame. 

 

5.3.3.2 Gravity Induced Drop 

When an object is held with two fingers and no torsional friction is present, the object 

will rotate until the centre of mass is at its lowest point due to gravity.  This is gravity 

induced drop. 

 

mg

 

mg

 

mg

 

 a) b) c) 

 

Figure 5.4: Gravity induced drop.  a) there is enough torsional friction to stop the object from rotating, 

b) grip has been lessened causing smaller friction circle allowing the object to rotate around the axis 

created by the two contact points, c) the object has rotated fully down so that it’s centre of gravity is 

below the axis created by the two contact points. 

 

By using the programmed gravity to allow the object to rotate along the newly defined 

x-axis joining the god-objects it is possible to control the rotation of the object 

through this axis. 
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If the friction circle area (A) is greater than a critical value (Acrit), then no rotation is 

allowed around this x-axis. If the friction circle area is less than the critical area then 

the resultant torque is given by: 

 

 1
crit

A
m

A

 
= × − 

 
resultT p g  [5.16] 

 

Using equation [5.16] will simulate viscous torsional friction.  In order to simulate 

stick slip friction it becomes necessary to use two different values for Acrit; one value 

for when no rotation is occurring, and a lower value for when there is rotation. 

 

An examination of the different types of contact deformation models and 

experimental data relating to those models can be found at [Babagli04]. 

 

5.3.4 Single Finger Contact Grasps 

It is possible to use a single finger to lift an object by a handle such that the object will 

rotate so that the centre of mass is below the point of contact.  Similarly, it is possible 

to use a single finger grasp to balance a long object so the god-object is kept below 

the centre of mass in an unstable position.  Picking up a cup by the handle or an 

acrobat balancing a pole are examples of each type (see Figure 5.5). 

 

A single finger contact can also be used to move an object along a surface simply by 

pushing the object although controlling the direction that the contacted object moves 

is dependant upon a number of factors including the frictional properties of the 

surface and the point of contact relative to the objects centre of mass. 
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Figure 5.5: Single finger grasps.  a) A stable single finger grasp (hook) where the centre of mass is 

below the point of contact. b) An unstable single finger grasp (pole balance) where the centre of mass 

is above the point of contact. 

 

5.4 Chapter Summary 

This chapter has shown how it is possible to calibrate multiple, discrete haptic devices 

to operate in the same virtual workspace.  This is important as it is necessary that the 

positions and forces are being transferred to / from the user in the correct manner 

otherwise what the user will see and feel can become extremely disconnected.  The 

Residual Force and Torque Algorithms have also been detailed which allows the user 

to grasp an object with multiple points of contacts and manipulate it in a realistic 

manner.  This is achieved by summing all the forces and torques that are acting upon 

the object and then resolving these forces and torques to generate a new position and 

orientation of the object.  One feature of the Residual Torque Algorithm is that it 

allows the Coriolis force to be generated when the object rotates at high speeds. 

 

This chapter concludes with a look at two finger and single finger grasps.  When more 

than two points of contacts are used, it is possible to manipulate an object fully.  

However, with two points of contact and no torsional friction, it is not possible to 

naturally rotate the object around the axis formed between the two points of contact.  

Two methods are described that allow for this rotation to be performed: using 

instrumented gimbals as part of the haptic device and a simple implementation of 



Chapter 5: Multi-Finger Manipulation Physics 

  97 

torsional friction that allows for an object to rotate between the contact points due to 

gravity.  The different single finger grasps and manipulations are also described which 

includes lifting via a handle, pole balancing and simple pushing. 
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6 Interactions Between Objects and their 

Environment 

In order to be able to generate a realistic, dynamic simulation in a virtual 

environment, it is necessary that the virtual objects interact with their environment in 

a realistic manner.  This will invariably require that objects in the environment will 

come into contact with other objects such as a cup placed on a shelf, a stack of boxes 

sitting on the floor, or a ball bouncing off a wall.  There already exists a number of 

physics libraries that can be used to achieve these interactions such as the open source 

Open Dynamics Engine [wwwODE07] or the commercial Havok Physics engine 

[wwwHavok07] but since they were developed for use in either low update 

applications (such as computer games) or high accuracy simulations where update rate 

is not a concern, they may not be suitable for use in Haptic enabled environments 

which require both high update rates and high accuracy. 

 

This chapter is concerned with these types of object-object collisions, in particular 

when one of the objects is being manipulated through a haptic device. The way in 

which an object can be picked up and placed on a surface is investigated as well as the 

means to simulate this.  This chapter concludes by looking at how a manipulated 

object can be used to feel the shape of another object thus allowing a volumetric 

proxy to be used instead of the volumeless haptic interaction points that have 

previously been described. 

 

6.1 Types of Interaction 

There are three distinct types of haptic object interactions that can occur in a haptic 

environment that need to be considered: 

a. An un-grasped object is in contact/collision with another un-grasped 

object. (6.1.1) 

b. A grasped object is in contact/collision with an unmoveable object 

such as a floor or wall (6.1.2). 

c. A grasped object is in contact/collision with another moveable object 

(6.1.3). 
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An object that is currently being manipulated by a user through a haptic device will 

require that the contacted object is updated at haptic update rates.  Since the residual 

forces need to be calculated at haptic update rates, this object is now referred to as a 

haptic object.  

6.1.1 Non-Haptic Object Interactions 

If an object is not being directly or indirectly affected by forces from the user then it is 

not necessary for the interacting objects to be updated at haptic rates.  In a heavily 

populated virtual environment, the majority of the object interactions will be of this 

type and these objects and their interactions can be updated at the slower, visual 

update rate. 

 

6.1.2 Haptic Object with Fixed Object Interactions 

The majority of haptic interactions between a grasped object will be with a fixed 

object since this type of interaction will occur whenever an object is picked up or put 

down on a surface.  It is these types of object interactions that are further investigated 

in this chapter. 

 

6.1.3 Haptic Object with Dynamic Object Interactions 

If a haptic object is in contact with another moveable object then it should be possible 

to affect the contacted object with the grasped object.  Similarly, if two objects are 

stacked on top of each other and the bottom object is lifted, it is reasonable to expect 

that the top object also moves and that the user feels as though they are lifting a mass 

equivalent to both objects.  However, these kinds of interaction can become 

computationally expensive when more than two objects are involved as long chains of 

interactions can be required and all objects in the chain will need to be updated at 

haptic rates.  These types of interactions have not been investigated although a 

‘lumping’ algorithm could be used to simplify this, where all objects in contact are 

treated as a single object. 
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6.2 Picking and placing objects 

One of the most common ways that we interact with objects is to pick them up and put 

them down onto a surface.  Since it is a task that we all have great experience in, it is 

necessary that this action can be simulated in as natural a manner as possible in a 

virtual environment. 

 

If we are placing a square based cup on a table it is usual that first a corner of the cup 

will contact the table, quickly followed by an edge before the entire base will contact 

the table.  If the cup has a circular base, then the edge will make contact first before 

the base.   

 

From the above example it can be seen that the initial contact of the corner or edge 

causes the cup to reduce the number of rotational degrees of freedom of the object 

causing it to rotate towards the base.  In order to achieve this in a haptic simulation it 

is necessary to be able to determine where the objects are in contact (contact 

determination) and how the objects should be constrained because of it (contact 

response). 

 

6.2.1 Contact Determination 

Since determining where two complex objects are in contact is a non-trivial task only 

the interaction between one complex object and one simple object has been 

investigated.  The simple objects were all parametric objects and included planes and 

spheres which were tested against complex polygonal meshes.  Where there were an 

infinite number of points of contact such as when an edge was lying along the surface 

of a plane only two contact points were returned, one at each end of the edge.  

Similarly, when a face was fully in contact with a plane then a contact point was 

returned for each corner of the face. 

 

The methods that were developed for determining the contact points are given in 

Section 7.4. 
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6.2.2 Contact Response 

Once it has been determined where the contact is going to occur, it is necessary to be 

able to apply an appropriate response to the object.  Two methods for doing this were 

investigated and developed: the impulse (velocity) based method and the force 

(acceleration) based method. 

 

When two rigid bodies collide the obvious solution is to apply a force to both bodies 

at the point of contact.  However, a force won’t be able to stop the bodies from 

interpenetrating as the force acts over time to change the object’s velocity.  Instead, in 

order to prevent the objects from interpenetrating, their velocities must be changed 

instantaneously and this is achieved by applying an impulse to the object.  These 

impulse methods are used in all the major open source and commercial physics 

engines and more details on how these can be implemented can be found at [Baraff97] 

[Hecker97]. 

 

6.2.2.1 Impulse Response Method 

In nature rigid bodies never penetrate each other. When a collision occurs the 

velocities of the colliding objects are changed in a discontinuous way so that the 

bodies do not penetrate. This is due to an impulse being applied to the object that near 

instantaneously changes its velocity. 

 

Impulse response methods were investigated using a sphere and a plane.  While the 

sphere was being placed on a surface the velocity of the sphere was reflected in the 

direction of the normal of the surface and some energy was lost i.e. 

 

 ( )new old e=v v n  [6.1] 

 

where v is the velocity of the grasped sphere,  n is the normal of the contacted surface 

and e is the coefficient of restitution. 

 

This is the equivalent of applying a force impulse to the grasped object. 

 



Chapter 6: Interactions Between Objects and their Environment 

  102 

In practice, using this method allowed for very hard object contact since the objects 

never interpenetrated. However, it was at the expense of stability in the system i.e. 

while the grasped object was being held upon a surface, the constant changes in 

velocity would make the object vibrate at the update frequency.  Although this 

vibration was reduced by increasing the coefficient of restitution, when complex 

objects were to be used, it was envisioned that this solution could be problematic.  

Furthermore, due to the encouraging results of the force response methods, impulse 

methods were not pursued further.  Subsequent to this research, further work in the 

use of impulse methods in haptic environments has been done by Barrow [Barrow06]. 

 

6.2.2.2 Force Response Method 

Whereas the impulse methods guarantee that objects will not interpenetrate, the force 

based methods rely upon it.   

 

The force response method is calculated in the same way that the forces on the haptic 

interaction point are calculated, i.e. the force is proportional to the depth of 

penetration.  Again, using a sphere and a plane, a force was applied to the sphere at 

the point of contact with the plane.  The force applied was proportional to the depth of 

penetration of the sphere into the plane and in the direction of the plane’s normal, i.e. 

 

 d k=f n  [6.2] 

 

where n is the normal of the contacted surface, d is the depth of penetration and k is 

the stiffness of the contact. 

 

Using this method it was expected that the stability of the system would be an issue 

but, due to the high frequency that the collisions and depth were calculated at, these 

problems did not present themselves.  In fact, for the sphere and plane contact, it was 

possible to use a stiffness constant over 5 times greater than the stiffness used to 

model the interaction between the haptic interaction points and the sphere.  With such 

a high stiffness it was not possible to notice that the objects were interpenetrating. 
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One of the advantages of this method is that it is already in a form compatible with the 

Residual Force / Torque Algorithms used for object movement previously described 

in Chapter 5.  Another advantage over the impulse method is that it does not require 

that the actual time of contact is calculated.  The disadvantage is that since no body is 

fully rigid, it is possible to push objects into each other which can cause the world to 

have a slightly spongy feeling to it if large stiffnesses can not be used.  

 

6.2.3 Rotate Down Behaviour 

When placing a polygonal object held with two fingers onto a surface, first a single 

corner will make contact with the surface.  Using the force response method along 

with the Friction Cone Algorithm and Residual Force / Torque Algorithms, by 

applying the calculated force that is caused by this contact, a torque will be induced in 

the object that will cause the object to rotate.  While a continued downward force is 

applied by the user, the object will continue to rotate around the axis formed between 

the two finger contacts until an entire edge is in contact with the surface.  This will 

result in two contact points where forces are being applied.  Further downward force 

will induce a torque along the contacted edge that will try to rotate the object further.  

Since this torque is now acting around an axis in the same direction as the contacted 

edge and perpendicular to the axis created between the two finger contact points this 

results in the object stopping rotating.  In practice, whilst using the Friction Cone 

Algorithm to model the finger contacts, this is not a problem since either the user will 

move his fingers to aid in the rotation of the object, or a finger will slip allowing the 

object to rotate.  Similarly, dependant upon the friction mechanic used between the 

grasped object and the surface, the object may either slip along the surface (rotate 

between the finger contacts) or roll (causing the finger contacts to move relative to the 

world space coordinate frame). 

  

When the object is grasped with three or more fingers the manner in which the object 

rotates will be determined solely by the residual torque that is in the object. 
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Figure 6.1: A 2 dimensional representation of the rotate down behaviour.  For rotate down behaviour 

to occur, the amount of torsional friction at the contact points must be less than the critical value thus 

allowing the object to rotate freely around axis of grasp.   It is assumed that the contact between the 

object and the surface is frictionless. a) Shows the object being grasped at the top most corner and 

being lowered on to a surface.  b)  When contact with the surface is made, due to the internal torques in 

the object the first point of contact (A) will not be directly under the centre of mass.  c) As the object is 

lowered, A will slide along the surface until d) the object is at rest on the surface.  If a surface with a 

large frictional component is used then A will not move.  In this case, the entire object will rotate 

around A as the object is lowered. 
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6.2.4 Rotate Up Behaviour 

Similar to how an object rotates when we place it on a surface, when we lift the object 

it is reasonable to expect that the object will behave in a similar manner.  However, 

when an object is being lifted up it will only rotate if it is not being grasped with 

enough force to stop it from rotating due to gravity.  Provided that this is not the case, 

rotate up behaviour will automatically occur due to the Residual Torque Algorithm. 
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Figure 6.2: A 2 dimensional representation of the rotate up behaviour.  For rotate up behaviour to 

occur, the amount of torsional friction at the contact points must be less than the critical value thus 

allowing the object to rotate freely around axis of grasp.   a) Shows the object at rest on a surface 

grasped in the top right corner with an upwards force applied.  b), c) As the object is lifted, the object 

rotates around the grasp axis resulting in corner A moving along the surface. d), e) Once the object has 

rotated so that the grasp axis is directly above the centre of mass (and corner A is directly below it) any 

additional upwards motion will lift the object up from the surface. 
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6.3 Feeling objects with other objects 

Using the force based method for object contact described above it is possible to grasp 

an object and use that object to feel the surface of another object; the contact forces 

between the manipulated object and the contacted object will be transferred to the user 

via the haptic devices.  In order to be able to achieve this it is simply necessary to be 

able to determine a point of contact, the appropriate normal to use at that point and the 

interpenetration depth of the two objects.  Since the Residual Force / Torque 

Algorithms will control how the object moves the number of contact points on the 

manipulated object is arbitrary.  This means that provided multiple points of contact 

can be returned for the two objects in contact, the algorithms will be able to render 

forces for both convex and concave objects.  This has been tested successfully using a 

sphere to feel complex polygon meshes as well as other parametric objects such as 

cylinders and tori.  However, with the appropriate normal calculations, it is possible to 

use one polygonal model to feel another. 

 

Section 7.4 shows how the appropriate normals, contact points and penetration depths 

can be calculated for a number of different object interaction types. 

 

6.3.1 Volumetric Fingers 

Since it is possible to feel an object through another object it is also possible to use 

complex volumetric ‘haptic fingers’ instead of simple haptic interaction points.  There 

are two distinct advantages to using haptic volumes instead of points to simulate the 

haptic interactions.  Most importantly, as the haptic volume crosses over polygon 

boundaries, the direction of the applied force will naturally change direction helping 

the user to feel around the object better.  Secondly, although not a problem if using 

the Friction Cone Algorithm, slipping through the cracks between polygon edges 

becomes impossible.  However, if complex polygon models are used for the haptic 

volumes and they are interacting with other complex models than the processing 

required to determine all the points of collisions and their respective depths and 

normals may become prohibitive.  In practice, simply using a sphere as the haptic 

volume will give many of the benefits of using a volume with minimal impact on the 

collision detection algorithms. 
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= Normal force applied.  Normal force is

   the same as for non-volumetric proxy.

= Normal force applied.  Normal force is

   different to with non-volumetric proxy

= Direction of motion of centre
   of volumetric finger.

= Desired direction of motion.

= Outline of volumetric finger

 

Figure 6.3: How a ‘volumetric sphere finger’ is guided around an edge. When the volumetric finger is 

on an edge, the direction of force changes smoothly from one face to the next as the sphere rolls over 

the edge. 

 

Figure 6.3 shows how a sphere can be used as the haptic volume whilst moving from 

one face of a cube to another.  The contact normal that is used whenever the sphere is 

in contact is always towards the centre of the sphere.  As the sphere approaches the 

edge of the cube the direction of the force changes allowing the user to feel around the 

edge of the cube successfully. If a simple point were used for the interaction and no 

force shading is applied, as the point crosses the edge of the cube it will fall of the 

cube. 

 

= Force applied by the surface to the proxy.

= Outline of volumetric finger

 

Figure 6.4: How a ‘volumetric sphere finger’ can feel a complex surface.  Note the multiple forces 

acting on the volumetric proxy from the multiple contact points. 

 

Figure 6.4 shows how a complex object with multiple points of contact with one 

finger can be explored.  The force that the user feels is the sum of all the forces that 
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the haptic proxy volume is subjected to.  Similarly, the sum of all the torques applied 

by each contact can also be rendered to the user if the haptic hardware allows for it. 

 

Friction between the haptic volume and the touched object can still be rendered using 

the Friction Cone Algorithm without modification provided that the collision 

detection algorithms return each contact point and their associated normal.  When 

there are multiple points of contact between the haptic volume and the object then a 

friction cone will be required for each point of contact.  These individual friction 

cones can then be updated independently. 

 

6.4 Chapter Summary 

This chapter has described to the reader the different ways in which a virtual object 

can interact with its environment.  The two different methodologies that can be used 

to calculate the object response due to environmental interaction (the contact 

response) are described (the force based and impulse based methods) and the force 

based method is expanded to show how it can be used with the Residual Force and 

Torque algorithms to allow for the picking up and placing of virtual objects within an 

environment.  Since this means that it is possible to feel the surface that the grasped 

object is being placed on, it becomes possible to use a grasped virtual object to feel 

another virtual object.  It is shown how this can be used to create a volumetric 

“finger” for exploring the virtual world instead of the volume-less points that have 

been described so far in this thesis. 
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7 Phantom3 - The Haptic Software Application 

In order to test the algorithms described in previous chapters it was necessary to 

create an application framework that could implement the developed algorithms.  It 

was desirable that the application developed would be flexible enough so that 

different rendering algorithms could be easily implemented and tested as well as for 

different object representations to be used.  This chapter describes the design and 

implementation details of the resulting application (named Phantom3) as well as the 

ancillary algorithms and methods that were also developed in order to achieve this 

goal.  The reasons for specific development choices made are also given.  The 

purpose of this chapter is to provide the reader with sufficient understanding of the 

software architecture so that they are able to create their own multi-finger capable 

applications and / or recreate any of the algorithms and results that are presented in 

this thesis. 

 

A secondary goal of Phantom3 was to be able to provide an easy method to quickly 

setup scenes with specific haptic properties.  This was necessary as the system was 

also to be used to conduct various perception based psychology experiments 

[McKnight04] [McKnight05] as well as to be used as a proof of concept system for a 

number of other application areas.  These included the investigation of impossible 

objects (such as a Klein bottle and a ‘TARDIS’ object (where the outer hull is smaller 

than the inner volume)), inclusion of haptics into a multi-user virtual environments 

[Seelig03] [Seelig04] [Jordan02], a training simulator for small animal veterinary 

training and use in a virtual shopping environment where objects could be picked of 

the shelves to be placed in a shopping basket. 

 

This chapter also includes the different collision detection algorithms that were 

developed and are used by Phantom3. 

 

7.1 Application Architecture 

Given that it is necessary that a haptic update rate of at least a constant 1KHz is 

maintained, this required that the application has atleast two threads: a high frequency 

thread for running the haptic rendering algorithms and a lower frequency thread for 
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running everything else. In order to satisfy the need for a constant update it was 

decided that RTLinux (a realtime variant of Linux) would be used for the operating 

system.  A real time kernel process would be used to read and write to the haptic 

devices whilst a user level process would be used for everything else.   

 

7.1.1 Features and Requirements of the Phantom3 Application 

The design and development of Phantom3 was led by a number of external and 

desired requirements.  These requirements were set by the internal goals of the ISRG 

research group in the Department of Cybernetics at the University of Reading, the 

EPSRC through the “Haptic cues in multi-point interactions with virtual and remote 

objects” (GR/R10455/01) research project that was sponsoring the research as well as 

limitation in the available hardware. 

 

Part of the research objectives of the EPSRC project was to investigate whether it 

would be possible to use haptic systems in place of real world systems in the study of 

touch based perception.  This requirement meant that Phantom3 would need to be able 

to be used for running psychological, perception based trials with the means to read in 

test data, save and output experimental results and also allow for the timing of various 

event based tasks (such as the time between hitting two keys on a keyboard.)  Setting 

up the perception tests would also require a means of quickly creating and setting a 

virtual environment with a number of different objects, each with different physical 

parameters (such as size, weight, colour, whether they were fixed or moveable etc.). 

 

The ISRG research group also wanted to investigate the use of real time Linux 

(RTLinux) to see whether it was suitable for use with the available Phantom 

hardware. 

 

Three Phantom 1.5 haptic devices were required to be used together (hence the 

application name, Phantom3).  Due to the interface hardware that was available, the 

final application had to run on a 2.4GHz, single processor machine.  Considering that 

each haptic device was expected to run at update rates of atleast 1KHz and the visual 

rendering also had to take place on the same machine, it was a requirement that any 

developed algorithms and their implementation had to be very processor efficient in 
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order to achieve the 1Khz target update speed.  Since the goal of the application was 

primarily for haptic rendering, it was acceptable to use simple graphics running at 

about 25Hz. 

 

Although not a requirement, it was desirable to be able to use independent models for 

the haptic rendering and the visual rendering.  This was to be used as part of the 

perception test to see if high fidelity visual imagery could be used to compensate for 

low fidelity haptic sensation. 

 

7.1.2 General Application Architectural Design 

The application design was based upon the principle that the individual objects know 

everything about themselves.  This object centric approach means that each object 

contains the functionality required to process its setup configuration, to render itself 

and to update its position and orientation based upon the residual forces in the entity.  

The advantage of this architecture is that it keeps all the object specific functionality 

in one place making it a simple matter to add new object types that will automatically 

function within the rest of the system.  This meant that rapid progress could be made 

during the early stages of the project.  It was also easier for a new user to understand 

how each object interacts with the various systems due to the object centric nature of 

the design. The other main advantage of the object centric design is that is that it is 

more memory efficient and processor efficient than using a function centric approach 

since there is only one object ever in existence related to that object type.  The 

disadvantage is that some subsystems (such as the graphical rendering and physics 

systems) are spread across multiple objects and files.  This makes it more difficult to 

replace various systems due to their distributed nature (e.g. upgrading the rendering 

system from OpenGL to DirectX would require a large amount of rework compared 

with if it were a function centric architecture).  Similarly, optimising specific systems 

can be less effective since it is not known how similar the data is that needs to be 

processed.  The object centric approach is also an architecture that just does not work 

in some cases, namely the collision system.  By its very nature, in order to calculate 

the intersection point between two collided objects, it is necessary that the collision 

system knows how to test two different shapes.  These types of functions can not 

feasibly be added to each object type and so a central system is required. 
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Luckily, the complexity of the Phantom3 application never exceeded the limitations 

of its object centric design although, towards the end of its development, it did 

become necessary to use some less than ideal programming shortcuts. 

7.2 The Systems and Sub-Systems of Phantom3 

Figure 7.1 shows an overview of the different sub-systems that are required and how 

they link together.  Only the major sub-systems are shown for clarity. 

 

Graphic System

Render Device

User Inter face Manager

Input System

Input Manager

Physics System

Collision Engine

Physics Engine

Loading System

Application Loader

Object Loader

Object Mesh Loader

Object System

Object Factory

Object Database

Entity Manager

Light Manager

Camera Manager

Haptic Device Manager

External

Files

Create and setup

the objects

Create and s etup

the render device

If Object database does  not

already contain object, request

and return a new object type

Store pointer to

returned object

in the manager

Regis ter entities w ith

the physics  system

 

Figure 7.1: Overview of the application’s sub-systems, and some of the interfaces between them.  In 

particular this diagram is showing the process flow for when a scene is being loaded and created. 
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7.2.1 Entities vs Objects 

An entity is an individual item that appears in a scene.  It may be a visible item, a light 

or even a camera.  An object is the template used to create the entity.  The entity is a 

relatively light weight structure, containing references to the object definitions as well 

as the defining characteristics of the individual item such as position, orientation, and 

colour.  In contrast to this, the object contains the data and functionality required to 

process the entity, such as storing the mesh structure and functionality for loading it 

and rendering it. 

 

A scene will contain a number of entities whereas there will only ever be a single 

object of each type in existence.  

 

7.2.2 Application 

The application contains references to all the other subsystems.  It is responsible for 

creating, initialising and destroying all the sub-systems as well as creating and 

activating the high and low frequency update threads. 

 

7.2.3 Loading System 

The loading system is comprised of two parts: the Application and Object Loader and 

the Object Mesh Loader.  

 

7.2.3.1 Application and Object Loader 

The Application and Object Loader is the central point for all loading and contains the 

functionality required for loading data from the external files used to setup the system 

and create the scene.  The application setup configuration file contains the screen 

options (size and position (if not fullscreen)), the rendering options (display shadows, 

render in stereo), the data directories (where the object and mesh files are located) and 

the DIVE settings.  The DIVE settings relate to work done to add haptics to a 

Distributed Interactive Virtual Environment and this is detailed in Section 8.3.2).  

Once read in, these options are then past to the appropriate systems as required in 

order to create the application. 



Chapter 7: Phantom3 – The Haptic Software Application 

  114 

The secondary task of the Application Loader is to load the objects required for the 

scene.  All objects that make up the scene are stored in the objects.ini configuration 

file.  Figure 7.2 shows a scene configuration file. 

 

//ObjectType    ObjectFile 

Camera  Camera_01 

 

EnvironmentMixed EnvironmentMixed_01 

//EnvironmentMesh EnvironmentMesh_01 

 

Light   Light_01 

GameObject Sphere_01 

GameObject Mesh_01 

GameObject Mesh_02 

GameObject Mesh_03 

Phantom Phantom_01 

Phantom Phantom_02 

//Phantom Phantom_03 

Figure 7.2: A typical scene configuration file.   The first field indicates the type of object and the 

second field indicates the object file to load. 

 

The first field indicates the type of object that is to be loaded, the second field 

indicates the object file to load (located in the ObjectDir directory previously read in).  

 

As the scene configuration file is read in, the corresponding entities are created and 

then the object specific loading is passed on to the newly created object. 

 

A typical object file is shown in Figure 7.3 
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Name=Mesh_01 

Type=Object 

Scale=1.0 

Colour=0.7,0.0,0.0,0.25 

Mesh=cube.obj 

HapticMesh=cube.obj 

NoRotate=True 

Inputtable=True 

Mass=0.5 

InertiaX= 0.00000405 
InertiaY= 0.00000405 
InertiaZ= 0.00000405 
Position=0.3,0.05,-0.5 

Orientation=1,0,0,0,1,0,0,0,1 

 

Figure 7.3: A typical object configuration file.  The object type will determine what parameters are 

available for this object. 

 

Depending upon the object type, different object parameters will be useable.   

 

The different object types and their specific parameters are described below in the 

object section. 

 

7.2.3.2 Object Mesh Loader 

The Object Mesh Loader is a secondary loading system that is used specifically for 

loading in 3D model formats and converting them to an application ready state.  The 

model loader is capable of reading in the following 3D object formats:  Autodesk’s 

3DS Max ASCII Scene Exporter format (.ASE), Autodesk’s Wavefront OBJ format 

(formerly the Alias Wavefront OBJ format) and Autodesk’s 3DS Max format 

(.MAX).  

 

The object mesh loader also provides the functionality to create parametric objects.  

These files do not exist, but are generated and created from the input parameters 

specified in the object configuration file. 
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7.2.4 Object Factory / Database 

The Object Factory / Database is responsible for creating and storing the different 3D 

renderable objects that are used in the application.  It is designed so that only unique 

objects are stored in the database.  When an entity is to be created and an object mesh 

is requested, the object factory first checks the database to see if the object exists and 

returns that object if it is found, otherwise it creates the object using the supplied input 

parameters.   

 

The Object Factory / Database stores two different types of object:  Graphic objects 

and Haptic objects. 

 

7.2.5 Database Objects 

There are two different types of database objects that are available: Graphic Objects 

and Haptic Objects.  The different types of graphic database objects are shown in 

Figure 7.4. 

 

GraphicDBObject

OpenGLObject

CubeOGL CylinderOGL MeshOGL PlaneOGL

SphereOGL TorusOGL
 

 

Figure 7.4: The different types of Graphics Database Object shown in their class hierarchy. 

 

CubeOGL, CylinderOGL and PlaneOGL are all primitive objects that have a direct 

match to an OpenGL primitive.  They only contain the necessary code to render them.  

MeshObjectOGL is the main graphical object type that is used throughout the 
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application.  Due to time constraints, only the MeshObjectOGL was enhanced to 

include shadow generation and rendering.  Because of this, any object that was 

required to cast a shadow was generated as a mesh objects (hence why SphereOGL 

and TorusOGL are subclasses of the MeshObjectOGL, even though OpenGL supports 

these shapes as primitives).  The MeshObjectOGL type is also used for any polygon 

models that are created using the Object Mesh Loader. 

 

HapticDBObject

CubeHaptic CylinderHaptic MeshHaptic PlaneHaptic

SphereHaptic TorusHaptic
 

Figure 7.5: The different types of Haptic Database Object shown in their class hierarchy. 

 

Figure 7.5 shows the different Haptic Database Objects that can be created.  Each 

Haptic database object includes the functionality for determining if a collision has 

occurred with a haptic (Phantom) end point as well functionality for calculating the 

force (both magnitude and direction) that is caused by this contact.  Two methods are 

given for calculating this; one that simulates frictionless contact and one that uses the 

Friction Cone Algorithm. In essence, the Haptic Database Objects contains the haptic 

rendering algorithms and all the data structures required for them, i.e. the MeshHaptic 

object also contains the Field Directed Connection Graph for its mesh.  Because of the 

object centric design, if a new rendering algorithm is to be implemented, it would be 

added to the Haptic Database Object. 

 

7.2.6 Entities 

A scene is comprised of many entities created from different objects.  At its simplest 

level, an entity contains a location (i.e. a position and orientation in the world frame).  

Different entities will also contain specific data and functionality required by their 

entity type.  Figure 7.1 shows the different entities that are available: 
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BaseObject

EnvironmentElement GameObject

Ha pticObjectCamera

MoveableObject HapticDe vice

Re alPhantomPhantomPhantom

LightObject

Environment

EnvironmentMixedEnvironmentMesh
 

Figure 7.6: The different available entity types shown in their class hierarchy. 

 

The Light Entity contains all the lighting information.  This includes the colour 

components (diffuse, specular and ambient), the attenuation constants, the light type 

(directional or ambient) and the light direction if applicable.  It also contains whether 

the light should cast a shadow or not. 

 

The Moveable Entity parent class contains all the methods required to move an entity 

around.  The movement of entities is controlled by keyboard and mouse events 

received via the Input Manager.  As such, only entities that have been registered with 

the input manager will be moveable. 

 

The Camera Entity contains the field of view, the near and far planes and the camera 

frustrum used for rendering the scene. 

 

The Haptic Entity parent class contains all the data required for enabling haptic 

interaction with the haptic interaction point.  It contains the haptic database object, 

and the data required for haptic rendering of the object (e.g. contact points and contact 

forces).   
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The Environment, EnvironmentMesh, EnvironmentMixed and EnvironmentEntity 

Entities are all used to create the environment.  In general use an application scene 

will contain an environment and a number of game object entities. The environment 

will always be static and unmoving whereas the game object entities will be dynamic 

and moveable. The EnvironmentMesh is a single entity that is constructed from a 

mesh.  The EnvironmentMixed is a special type of entity that contains a number of 

EnvironmentEntity entities.  The different environment entity types are due to the 

different methods of creating the environment that the Object Factory provides. 

 

The Game Object Entity is the main dynamic entity type that is used in a scene. It is 

also the main physics enabled entity.  Any entity that required physically based 

movement (i.e. reacting to external forces such as gravity) must be a game object 

entity.  It contains a reference to the Graphic Database object as well as the physical 

parameters of the entity (e.g. mass, rotational inertias, centre of mass, linear and 

angular velocities) as well as the data structures and functionality required for 

calculating the residual forces and torques in the object 

 

HapticDevice, RealPhantom and PhantomPhantom Entities are the entities that 

represent the haptic interaction point.  The HapticDevice Entity contains the interfaces 

to activate, initialise, re-initialise and deactivate the haptic device as well as to read 

the position of the haptic interaction point and write forces to the haptic device.  Since 

multiple haptic devices can be used, the Phantom Entity also stores whether this 

haptic device is the main master device or the device that it is parented to.  If the 

device has a parent than the transformation between this device and its parent is also 

calculated.  The Phantom Entity also contains the transform that should be applied to 

the read positions and written forces based upon the position and orientation that the 

hardware is setup.  The RealPhantom entity contains the specific functionality 

required for using a Phantom.  The PhantomPhantom entity is a special entity used for 

debug purposes.  It allows the application to run and function correctly without the 

need for an actual haptic device.  Instead, positions can be generated using the mouse 

and keyboard.  This entity could be further subclassed to allow for the use of a remote 

device connected across a network.  If a new haptic device were to be used then it 

would be a subclass of the HapticDevice. 
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7.2.7 Entity Managers 

For reasons of computational efficiency and code compartmentalisation, a number of 

specialist entity managers were created instead of having a single global entity 

manager.  These managers are created when specific processing is required for entities 

of that type.  For instance, light entities must be setup at the beginning of each scene 

before the object entities are rendered.  By having separate managers for specific 

functional entities, the order of processing / rendering can be better controlled whilst 

also being more computationally efficient. 

 

7.2.7.1 Game Object Entity Manager 

The Game Object Entity Manager contains all the Game Object Entities loaded into 

the application.  It also maintains two lists of the entities; one list storing all the game 

object entities that are to be updated at the haptic update frequency and a second list 

for the game object entities that are to be updated at the normal update frequency.  

The functionality is also provided to move the entities between the two lists.  More 

details on the threading / update strategy implemented can be found in Section 7.3. 

 

7.2.7.2 Light Manager 

The Light Manager maintains a list of all the light entities in the scene.   

 

7.2.7.3 Camera Manager 

The camera manager contains a list of all the cameras in the scene.  Normally, only 

one camera entity will exist but when stereoscopic viewing is enabled, two cameras 

will exist, one for each eye’s view. 

 

7.2.7.4 Haptic Device Manager 

The Haptic Device Manager contains all the haptic device entities.  It also contains the 

functionality for changing the spring and damping constants used by the devices.  

When multiple devices are used together a single device will be designated as the 

master device that the other devices are positioned and oriented relative to.  This 

master device is then normally attached to the camera so that the haptic devices 

always remain in the position relative to the camera’s viewpoint.  The Haptic Device 
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Manager is responsible for updating the transformation matrices of each device to 

ensure that this is always the case. 

 

7.2.8 Render Device 

The Render Device is responsible for the visual rendering of the scene and contains 

the functionality required for rendering the entities in the scene as well as for 

generating any shadows that are cast by the entities and lights. 

 

It is possible to start the application and not use a render device.  In this case, all the 

objects will still be in the virtual environment but they will only be visible haptically.  

Running without an active render device is equivalent to using the system with the 

monitor turned off.  When interfacing with the collaborative virtual environment, the 

render device is replaced with the DIVE Message router.  The DIVE message router is 

explained in Section 8.3.2. 

 

7.2.9 User Interface Manager 

The User Interface manager is responsible for displaying all 2D text on the screen.  

Text is written to the screen using 2D coordinates and the length of time that the text 

should remain visible. 

  

7.2.10 Collision Engine 

The collision engine contains all the functionality for determining collisions between 

multiple entities and is responsible for determining any collisions in the scene.  

Entities are registered with (added to) the collision engine as being either collideable, 

haptic or both.  Haptic entities are tested against the haptic interaction points for 

collisions and collideable entities are tested against all other collideable entities for 

collisions.  Every update, the collision engine first checks all registered haptic entities 

for collisions with the haptic entities before determining any collisions between 

individual objects.  Depending upon the type of object-object collision, either a 

specialist object type to object type collisions method will be used (e.g. sphere-sphere, 

sphere-plane, sphere-torus, sphere-mesh) or the collision test is reduced to multiple 
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point-object tests (such as mesh-plane, mesh-mesh collisions).  More details on the 

actual collisions algorithms implemented are detailed in Section 7.4. 

 

7.2.11 Physics Engine 

Due to the object centric nature of the design there is no central physics engine.  

Instead, all physics related code is spread between the database objects and the 

entities.  The haptic database object is responsible for determining the forces caused 

by the interaction between the entity and the haptic end effectors, the collision system 

is responsible for determining the force due to collisions between entities and the 

entity is responsible for calculating its residual forces and torques and then 

subsequently repositioning and reorienting itself. 

 

7.2.12 Input Manager 

The Input Manager is responsible for catching and re-routing keyboard events (key 

press, key release) and mouse events (mouse button press, mouse button release, 

mouse move).  Once events are received then the Input Manager either calls specific 

functions on various systems or passes the event onto the system to deal with.  These 

functions include, but are not limited to: exiting the application, disabling shadow 

rendering, disabling stereoscopic rendering, modifying the stereoscopic rendering 

settings, resetting all objects back to their original starting points, modifying the 

spring and damper constants of the haptic devices. 

 

Entities can also be registered with the input manager so that input events can be 

dispatched to the currently active entity.  These despatched events are normally used 

to move the various entities around.  This is useful to allow quick positioning of the 

various entities in the scene (such as moving a directional light around so that the 

shadows are cast in a different direction) but it is usually used as a means to control 

the current camera (i.e. move around the scene). 
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7.3 Threading Strategy and Application Process Flow 

Due to the need to run the haptic rendering algorithms at a high update rate and that 

the application was to run on a single core CPU, a multi-process system was used 

with a high frequency thread responsible for the haptic rendering, a low frequency 

thread responsible for graphics and input updates and a kernel level process for 

reading and writing to the Phantom hardware.  Initially it was desired that all the 

haptic rendering (including the calculation of the friction cones and the force/torque 

resolution) would be done in hard real time (i.e. within the real time kernel) but this 

was abandoned due to the difficulty in developing and debugging kernel level code.  

Instead the high frequency thread was updated at the same frequency as the kernel 

process.  The kernel level process was solely responsible for transforming the 

requested force and encoder positions to individual motor voltages and a 3D position 

representing the haptic interaction point.  It also had the responsibility of activating, 

resetting and deactivating the Phantom hardware.  A shared memory interface was 

provided by the kernel process which allowed the application to read the haptic end 

point position from the hardware as well as to write the calculated force vector to the 

hardware. 

 

A side effect of the haptic force calculations being in the user thread was that a jitter 

of about 1ms every 1000 samples at 1kHz was introduced due to the slight delay with 

swapping between the threads. 

 

Figure 7.7 shows the different threads used, the inter-thread shared data structures and 

their individual process flows. 
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entitie s in the fa st update l ist.
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the ha ptic devices.
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Move any  entities fro m the slo w entity list
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Figure 7.7: The different threads, the shared interfaces between them and their process flows.  This 

diagram shows the process flow after the threads have been created. 

 

When the application is started the following process flow is used.  It should be noted 

that the kernel level process needs to be running before the application is loaded. 

 

1. Load the application settings. 

2. Initialise the systems as defined in the startup config file.  This may include 

the keyboard input system, DIVE system, graphics system. 

3. Create the entities that are in the scene as defined in the scene configuration 

file. 

4. Create the fast and slow update threads. 

5. Move the entities to the appropriate fast/slow update thread. 

6. Enable the Phantom Realtime process.  This process will already be running 

before the application is started.  Enabling it allows it to read/write to the 

shared memory interface. 

7. Activate the threads. 

8. Wait until application exit is requested. 
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Once activated, the process flow for the kernel level process is: 

 

1. Read requested force from the shared memory.  This is written in by the 

Phantom3 application. 

2. Calculate required motor voltages. 

3. Read the encoder values. 

4. Calculate the haptic endpoint position from the encoder values. 

5. Write motor voltages to motors. 

6. Write calculated endpoint position to shared memory. 

7. Wait until next update is due. 

 

The kernel level process runs in hard real-time and runs independently of the 

Phantom3 application.  Whilst it is running the joint angles and hence the haptic 

endpoint is always being calculated.  This removes the need to continually re-zero the 

Phantoms every time the Phantom3 application is started.  The shared memory is the 

interface between the hard real-time process and the high frequency user thread in 

Phantom3. 

 

Once activated, the process flow for the high frequency thread is: 

 

1. Update the transfer list, pushing any objects that no longer require a fast 

update onto the slow update list. 

2. Read in the new haptic end point position. 

3. Calculate collisions between the haptic end point and any objects in the fast 

update list. 

4. Update the Friction Cone Algorithm for any haptic contacts. 

5. Calculate object-object collisions for all objects in the fast update list only. 

6. Resolve the force and torques in all objects in the fast update list only. 

7. Reposition and re-orient all entities in the fast update list only. 

8. Wait until the next update is due. 
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Once activated, the process flow for the low frequency thread is: 

 

1. Update the transfer list, pushing any objects that now require a fast update 

onto the fast update list. 

2. Update all non-entity systems including the input system, DIVE system and 

graphics system if present. 

3. Calculate object-object collisions for all objects in the slow update list only. 

4. Resolve the force and torques in all objects in the fast update list only. 

5. Reposition and re-orient all entities in the slow update list only. 

6. Wait until the next update is due. 

 

7.4 Collision Detection Implementation 

The following collision methods were developed and implemented for determining 

when the haptic interaction point had collided with an object. Calculations for the 

intersection point are also given although it should be noted that in the case of the 

intersection tests this calculated point is not necessarily the actual point of 

intersection.  To calculate the exact point of intersection it is necessary to cast a ray 

from the last known position of the point to the current position and determine where 

this ray intersects the objects.  However, since this calculation is computationally 

much more expensive than the simple solution and the positional error between the 

described methods and the correct methods are negligible it was determined that the 

simplified method was sufficient.  This assumption holds true with the Phantom 

haptic device due the high resolution of its sensors and that it is not possible to move 

the device very far in one update.  This small error may become an issue if a high 

velocity haptic system is used with very small objects.  [Eberly00] details the correct 

method to calculate the intersection point for a number of parametric objects. 

 

The methods described here are all calculated in the object’s coordinate frame (object 

space).  This makes it necessary to transform the point being tested from its local 

coordinate frame (normally the world coordinate frame) into the object coordinate 

frame.  It is assumed that this has already occurred in the following explanations. 
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7.4.1 Point - Plane Intersection 

 

Figure 7.8: Point-plane collision test. 

 

A plane can be defined by the equation Ax + By + Cz + D = 0 or by a normal vector 

(n) and a scalar distance (D) from the origin where n = [A, B, C], and D is the same 

value as in the plane equation.  A plane has a front and back and this is determined by 

the direction of the normal.  A point - plane intersection is considered to occur if the 

point is behind the plane, i.e.: 

 

 D≥H ni  [7.1] 

 

If a collision has occurred then the point of intersection (p) can be defined as: 

 

 penetrationd D= −H ni  [7.2] 

 penetrationdp = h + n  [7.3] 

 

D 

n 

Hb (below plane) 

Ha (above plane) 

(0,0,0) 
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7.4.2 Point - Sphere Intersection 

 

Figure 7.9: Point-sphere collision test. 

 

A sphere is defined with a radius (r) and a centre (c).  A point - sphere intersection 

will occur if the distance of the point to the centre is less than the radius of the circle.  

i.e.: 

 

 v = H - c  [7.4] 

 2 0r− <v vi  [7.5] 

 

If a collision has occurred then the point of intersection (p) can be defined as: 

 

 =norm

v
v

v
 [7.6] 

 r normp = c + v  [7.7] 

 

7.4.3 Point - Cylinder Intersection 

 

A cylinder is normally defined as a top radius, a base radius and a length.  It is 

therefore possible to create two different types of cylinder: a symmetric cylinder 

where both the top and base radius are the same, and a conic cylinder where the top 

and base radius are different.  Although it is possible to use the same intersection test 

for both types of cylinder it is more appropriate to have two separate tests due to the 

c 

r 

Hi (inside sphere) 

Ho (outside sphere) 

(0,0,0) 
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comparative simplicity of the symmetric cylinder when compared to the conic 

cylinder. 

 

Figure 7.10: Point-cylinder collision test for a symmetric cylinder 

 

A cylinder can be defined as a length l, top radius rt and base radius rb, oriented along 

the y (up) axis.  It is also common that the centre of the cylinder is placed at the 

origin.  

 

Collision against a cylinder is done in two steps:  First, determine whether the point is 

above or below the cylinder.  Then calculate the radius of the cylinder at the points 

relative position rr.  If the horizontal distance of the point to the axis is less than the 

calculated radius rr then an intersection has occurred., i.e.: 

 

1. If the absolute ‘y’ position of the point is greater than half the cylinder 

length then no collision has occurred. 

 

 
2,

( . )
2,

l  no collision
abs y

l  collision is possible

≥

<

H  [7.8] 

 

2. If an intersection is possible then calculate the edge radius at the point’s 

‘y’ value (rhip). 

 

 b tr r
g

l

−
=  [7.9] 

H 

y axis 

(0,0,0) 

x axis 

rt 

l 
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2

b t
centre

r r
r

−
=  [7.10] 

 .hip centrer r g y= + H  [7.11] 

 

Note that rcentre and g can be pre-computed and do not need to be 

recalculated every time. 

 

3. If the horizontal distance of the point is less than the radius calculated in 

[7.11] then an intersection has occurred. 

 

 [ ]. , 0, .x z=newH H H  [7.12] 

 0new hipr− <H  [7.13] 

 

If the cylinder is symmetric then step 2 above is not necessary since rhip = rb = rt. 

 

The above intersection algorithm only takes into account the body of the cylinder.  If 

it is necessary to collide with the top and base of the cylinder then it is necessary to 

check for this separately.  This can be achieved in the same manner as described for 

polygon collision testing (see Section 7.4.5) but using a circle of the appropriate 

radius (rt or rb) instead of the polygon edges. 

 

The intersection point (p) can be calculated as follows: 

 

 new
norm

new

H
H =

H
 [7.14] 

 [ ]0, . ,0 .hipy r= + normp H H  [7.15] 
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7.4.4 Point - Torus Intersection 

x

Redge

c

Rring

z

 

Redge Rring

c

y

x  

 a) b) 

Figure 7.11: Point-torus collision test. a) shows a view looking from above the torus (along the y axis), 

b) shows a view from the side (looking along the z axis).  

 

A torus can be defined by a ring radius (Rring) and an edge radius (Redge) around a 

centre (c).  It may also be necessary to include an axis of alignment but, it is assumed 

that the torus is oriented around the y (up) axis.  A torus can also be thought of as a 

sphere with radius Redge revolved around the up axis at a distance of Rring from the 

centre. 

 

Collision against a torus is done in two steps:  First, determine how far the point is 

above or below the plane of the torus.  If the point is less than the edge radius then 

this indicates that there is the potential for a collision.  The second step is to place a 

sphere with radius Redge in the direction of the point to the centre of the torus at a 

distance Rring from the centre. A simple point-sphere intersection test can then be done 

to determine whether an intersection has occurred, i.e.: 

 

1. If the absolute ‘y’ position of the point is greater than the edge radius, then 

no collision has occurred.  

 

 
,

( . )
,

r

r

R  no collision 
abs y

R  collision is possible

≥

<

H  [7.16] 
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2. If a collision is possible then create a sphere at the position determined by 

[7.18]. 

 

 . 0y =

=

pos

pos

pos

pos

pos

s = H

s

s
s

s

 [7.17] 

 radiusR
centre pos

s = s  [7.18]

  

 

3. Do point-sphere collision test against the sphere located at scentre with 

radius Rring. 

 

7.4.5 Point - Polygon Intersection 

n

po

pn

(0,0,0)

D

 

Figure 7.12: Point-polygon collision test. 

 

A polygon is defined as an enclosed area within an infinite plane.  A polygon can be 

made from any number of edges although it is common that either three or four edges 

are used (triangles and quads) in 3D models.  Described here are two ways to do a 

point-polygon collision test against a triangular polygon although these methods can 

be extended and applied to any convex polygon.  A convex polygon is a polygon 

where every internal angle is less than 180
o
.  The first method is a processor and 

memory efficient algorithm used in the Irrlicht Game Engine [wwwIrrlicht05] and is 

derived from a paper written by Kasper Fauerby [Fauerby03].  The second method is 

one of the most processor efficient collision algorithms available although it is also 
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one of the worst algorithms in terms of memory requirements and is based upon the 

concept of voronoi regions.  This method is also ideally suited for use with Face 

Directed Connection Graphs (FDCGs) as it requires no data duplication (see Section 

4.2.3 for information on FDCGs). 

 

Although a polygon is made from a plane, and therefore has a front and back, it is not 

possible to do a simple intersection test as described in Section 7.4.1 for the plane.  

This is because in practical use a single polygon will not exist.  Instead, the polygon 

will be part of a mesh and it is normally necessary to determine which polygon in the 

mesh was collided with.  This requires a two stage approach to determining whether a 

particular polygon has been collided with.  Firstly, it must be determined whether the 

plane that the polygon lies on has been crossed.  Secondly, it must be determined 

whether the plane was crossed in the enclosed area bounded by the polygon. 

 

To determine whether the plane has been crossed it is necessary to determine the 

distance that the previous position of the point (p
t-1
) and the current point (p

t
) is from 

the plane.  If there is a sign change between the two distances then the plane has been 

crossed, i.e.: 

 

 td D= −tp ni  [7.19] 

 1td D− = −t-1p ni  [7.20] 

 1
0,

*
0,

t t
 collision occured

d d
no collision

− <

≥

 [7.21] 

 

An advantage of using this positional history is that when a collision occurs, it is 

possible to determine the direction of movement i.e. if the point has entered or left the 

object.  This can be determined by examining the sign of the result of equation [7.19].  

If the result is positive then the point has exited the object, otherwise it has entered. 

 

Once it has been determined that the plane has been crossed, it is necessary to 

determine where the intersection point (p) is and whether the intersection point is in 

the area bound by the polygon.  The intersection point is calculated as follows: 
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 = t t-1

dir
d p - p  [7.22] 

 1td −= +t

dir
p p d  [7.23] 

P0

P1P2

P

v1v2

v0

 

Figure 7.13: Point in triangle test. 

 

It is now necessary to determine if p is inside the triangle.  The simplest way is to 

construct three vectors (v0, v1, v2) from the intersection point to each vertex of the 

triangle (p0, p1, p2)and normalise each of these vectors.  If the sum of the angles 

between these vectors is 2 π radians then the vertex is inside the triangle, otherwise it's 

not. Although this method is mathematically correct, in practice due to the floating 

point precision in the calculations, the sum of the angles will never exactly equal 2 π 

radians.  This is easily solved by including an error threshold (ε) where if the 

difference between the sum of the angles and 2 π radians is less than the ε then the 

intersection point is inside the triangle.  Figure 7.14 shows the effects of using 

different values and how they affect the ‘collidable’ surface of the polygon. 

 

   

ε = 0.05   ε = 0.01   ε =0.001 

Figure 7.14: Effect of using different values for ε with the point in triangle test 
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A more robust method to determine whether the point crossed the polygon is to 

associate a perpendicular plane to each of the polygon’s edges.  These ‘test’ planes 

would be aligned along the edge so that they pass through two connecting vertices.  

Given p1 and p2 are two vertices on the polygon and npoly is the normal of the 

polygon, the normal (ntest) and D value (Dtest) of a perpendicular plane through p1 and 

p2 can be computed as follows: 

 

 
new 1 poly

p = p + n  [7.24] 

 
1 2 1

v = p - p  [7.25] 

 
2 new 1

v = p - p  [7.26] 

 
test 1 2

n = v × v  [7.27] 

 test
test

test

n
n =

n
 [7.28] 

 testD = −
1 test

p ni  [7.29] 

 

Once these ‘test’ planes have been constructed the intersection point must be behind 

all the test planes that surround the polygon.  If this is the case, then a collision has 

occurred within the polygon at the intersection point calculated previously. 

 

7.4.6 Sphere – Object Intersections 

The above intersection tests can all be modified to test whether a Sphere object 

intersection has occurred.  This is achieved by including the sphere’s radius into the 

calculation. For a Sphere – Plane intersection test an intersection will occur if the 

distance between the sphere and the plane is less than the radius of the sphere.  

Similarly, if a Sphere – Sphere intersection has occurred, then the distance between 

the two spheres will be less than their combined radii. 

 

In the case of the Sphere - Polygon test it is also necessary to test whether the sphere 

has intersected with the edges of the polygon.  Similarly, it may also be necessary to 

determine whether the sphere has intersected with the polygon’s vertices. 
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To test for intersections between the sphere and the polygon’s edges sphere – edge 

intersection tests are required.  

 

P2P1 P

P3 r

 

Figure 7.15: Sphere-plane collision test. 

 

Two vectors, ve and vw are defined as: 

 

 2 1e = −v p p  [7.30] 

 3 1w =v p - p  [7.31] 

 

By projecting vw onto ve the p can be calculated as: 

 

 w e

e e

b
 

=  
 

v v

v v

i

i

 [7.32] 

 1 eb=p p + v  [7.33] 

 

If b is between 0 and 1 then p is on the edge.   

 

If the distance between p3 and p is less than r than a sphere edge intersection has not 

occurred. 

 

When testing the sphere against a polygon it is necessary to test for intersection with 

the face, edges and vertices.  If an intersection is detected then the rest of the tests can 

be ignored.  
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7.4.7 Lozenges, Pebbles, and other Scaled Objects 

All the above object intersection tests are described in the object’s coordinate frame 

i.e. the point needs to be transformed from its native coordinate frame to the object’s 

coordinate frame in order for the above methods to work.  However, if the 

transformation matrix between coordinate frames includes a scaling factor then it is 

possible, without modification, to use the same intersection tests for capsules, pebbles 

and other scaled objects.  For example, a lozenge is a sphere that has been scaled 

along two of its axes. 

 

 

Figure 7.16: A 2D example of a scaled object. (a) shows a circle without scaling and (b) shows the 

same circle scaled by 150% in the x axis and by 50% in the y axis. 

 

In order to do the collision test with a scaled object, the points that are being tested 

must first be transformed into the scaled object’s coordinate frame.  This 

transformation will move the point from world space to scaled object space.  Since the 

scaling is relative to the world space, once the point has been transformed to the 

scaled object space the transformed point is no longer scaled relative to the object so 

the normal collision tests can be used. 

 

This technique is very effective when the scaled object is only tested against points 

and it is this method that was used in the second psychological experiment Perceptual 

Cues for Orientation in a Two Finger Haptic Grasp Task (see Section 8.3.1.2).  

Unfortunately, this method is not suitable for use with complex objects such as to test 

the collisions between a scaled sphere and a sphere.  This is due to the fact that 

(a) (b) 

x axis 

y axis 
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transforming one object from its coordinate frames to the other object’s coordinate 

will result in one of the objects still being scaled. 

 

7.5 Implementation Specifics 

7.5.1 Integrators 

In most dynamic systems that use integrators it is normally necessary to use an 

advanced integrator implementation such as the Runge-Kutta (RK4) integrator.  This 

helps minimize the errors that are inherent in integrating a function based upon a 

discrete time step and is usually achieved by over-sampling the function, i.e. 

integrating over fractional time-step increments.  The Phantom3 application uses 

integration methods in order to convert the residual forces and torques in an object to 

a new position and orientation.  It was found that simple euler integration was 

sufficient since the application was already running at a high time step with respect to 

the input frequency.  This was advantageous as the added computational time required 

would have lowered the overall haptic update rate. 

 

7.5.2 User Space vs Kernel Space 

The decision to keep the haptic rendering algorithms in the non-realtime user space 

instead of the real-time kernel space was made simply for ease of development since 

none of the existing development tools (at time of implementation) were particularly 

suited for real-time development. 

 

7.5.3 Stick-Slip Friction Modelling 

Due to floating point precision errors and the limited sensor resolution of current 

haptic devices, stick-slip friction models suffer from too much stick and not enough 

slip.  This occurs because in one update the end point of the haptic device may not 

have physically moved far enough to register a change in the sensors.  This problem 

can be overcome by calculating the cosine of the angle between the surface normal 

and the force and comparing it to the dynamic friction threshold.  The cosine of the 

angle is used since this is the result of a dot product between two normalised vectors.  
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The cosine angle (θ) between the surface normal (nface) and the force (Fresp) is 

calculated as follows: 

 

 
resp

face

resp

cos( )=θ
F

n
F
i  [7.34] 

 

The dynamic friction threshold (DFT) is given by equation [7.35] here µd is the 

coefficient of dynamic friction and ε is a small positive value. 

 

 -1

FT dD = cos(tan ( ))+µ ε  [7.35] 

 

A state change from slip to stuck will occur if: 

 

 FTcos( ) < Dθ  [7.36] 

 

7.5.4 Polygon Transitioning 

Implementing the polygon-transition algorithms as described in Section 4.2.3 may 

cause undesirable effects while transitioning co-planar and convex polygon 

boundaries since the god-object will always be placed on the edge during polygon-

edge-polygon movement.  This can be easily remedied by recursively changing the 

state until the god-object does not need to be moved.  This requires that the original 

god-object is not updated until the proposed god-object comes to rest.  By 

implementing the algorithm in this way, coplanar polygons will always feel smooth; 

otherwise they feel as though they have a 'sticky' ridge where the polygons are joined.  

Similarly, convex polygon crossings feel more realistic instead of having sticky edges. 

The disadvantage of this recursion is that the function runtime is no longer 

deterministic, however, in practice the computational burden of this recursion is low.  

Although recursion in real-time programming is normally considered bad practice, in 

this case the god-object always converged on its resting place within three iterations 

and so was not a cause of any timing problems. 
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7.6 Chapter Summary 

In this chapter, the different software systems that were created in order to develop the 

algorithms described in Chapters 3 to 5 have been presented.  The purpose of this 

chapter has been to show the user how the software was developed and structured in 

order for them to be able to recreate a multi-finger enabled haptic system whilst also 

highlighting any issues and workarounds that were necessary.  The software structure 

and systems have been detailed as well as the threading strategy that was implemented 

to facilitate the high frequency requirements of haptic systems alongside the low 

frequency requirements of the other systems.  The process flow is also described 

which explains how objects are moved between the low and fast update threads 

depending upon their current requirements.   

 

A large section has also been included to describe the different collision algorithms 

used and developed.  These have been included since collision detection is an 

important aspect of haptic rendering.  The inclusion of the intersection / collision tests 

with parametric objects is of importance as it is this which allows the Friction Cone 

Algorithm to be applied to parametric objects. 

 

The chapter concludes by considering the implementation specific details. Although 

this appears to be only relevant to the developed Phantom3 application, it also 

contains useful information that allows the previously described algorithms to 

function better in a computer simulation (i.e. a discrete time system). 
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8 Results, Case Histories and User Applications 

The aim of the research described in this thesis was essentially to develop a set of 

haptic rendering algorithms for multi finger contact and manipulation of rigid bodies, 

i.e. to allow for the natural manipulation of virtual objects with multiple fingers. 

 

The algorithms were designed to be generic so that they could be used to model 

different surface types and materials and some psychophysical testing was done to 

determine how the developed algorithms compared to the real world which is detailed 

in [McKnight04] and [McKnight05]. 

 

This chapter presents some performance results and case histories that will show the 

numerical robustness of the algorithms, that the developed multi-finger haptic system 

is intuitive to use and that a high degree of realism can be achieved. 

 

Videos of the multi-finger setup and application (which implements both the Friction 

Cone Algorithm and the Residual Force / Torque algorithms) can be found here 

[HarwinVideos] 

 

8.1 Experimental Results  

The algorithms described were implemented and tested using a dual Xeon 2.8GHz 

computer running RTLinux with a Phantom 1.5 haptic interface from Sensable 

Technologies.  All the tests were undertaken with all surfaces having a stiffness of 

500Nm and the depth of penetration of the haptic Interaction point fixed at 5mm. The 

friction model shown in Figure 8.1 was used in these tests. 
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Figure 8.1: The stiction model of friction was used for generating the experimental results. 

 

In the first test, the haptic interface was moved across a plane.  The thick line shown 

in Figure 8.2 shows the path that the god-object made along the surface of the plane 

and the straight lines show the direction and magnitude of the tangential force being 

applied to the object by the user.  The force lines are generated every 20ms.  This 

work follows the experiment done by Hayward [Hayward00].  In (1) and (2), the force 

is in the direction of motion and is tangent to the path that is being traced.  At (3), the 

applied force is reduced causing the system to transitions to the stuck state causing the 

god-object to stop moving.  The haptic interface is then moved in a 360
o
 clockwise 

motion (whilst the god-object remains fixed) before the static friction is overcome and 

motion is resumed.  At (4), the motion stops and a change in direction is executed.  At 

(5), the same manoeuvre is completed but this time in the opposite direction. 

 

Figure 8.2: Force direction and position whilst tracing a path over a plane. 

Friction 

Velocity 
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The second set of tests shows how closely the algorithm models the friction model 

that is being used.  The effect that noise has on the algorithm is also tested by adding 

Gaussian noise to the position of the haptic interaction point.  The coefficient of static 

friction µs and the coefficient of dynamic friction µd have been set to 0.7 and 0.3 

respectively. 

 

 

Figure 8.3: A plot of the retarding force (y-axis) against the velocity of the god-object (x-axis) with no 

added gaussian noise. 

It can be seen that in the absence of noise the algorithm is capable of perfectly 

recreating the desired friction model (Figure 8.3).  It may be expected that the 

addition of noise would cause the simulation of the friction model to be affected, 

however, as can be seen in Figure 8.4, the addition of noise has no adverse effect on 

the algorithms ability to model the desired friction model.  In fact, the addition of 

noise has no effect on the simulation of the friction model.  This does not mean that 

the user will not perceive a difference due to the noise since any noise at the input will 

move the haptic interaction point around and so this will have a corresponding effect 

on the direction of the force shown to the user.  Instead, it means that the underlying 

simulation of the friction model is unaffected by noise and will always perfectly 

recreate the desired friction model. 
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Figure 8.4: A plot of the retarding force (y-axis) against the velocity of the god-object (x-axis) with 

gaussian  noise added with mean = 0 and and σ =2mm 

 

The third test is to determine how robust the algorithm is to numerical drift.  The Dahl 

model and the more recent models based upon it exhibit drift when subjected to an 

arbitrarily small bias force and arbitrarily small vibrations [Hayward00].  It is 

important that any friction algorithm used with haptic interfaces is drift free since 

small vibrations will always be present because of the discrete time nature of the 

haptic controller.  For this test the position of the haptic interface was fixed and 

Gaussian noise was added (mean = 0 and σ = 0.2mm) to the position of the haptic 

interaction point.  The algorithm was then left to run over a period of approximately 

three minutes. 
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Figure 8.5: A plot of the position of the god-object and haptic interaction point against time.  The 

upper line (at 2.25mm) represents the position of the god-object and the lower, noisy line represents the 

position of the haptic interaction point.  Gaussian noise with mean = 0 and σ=0.2mm has been added to 

the position of the haptic interaction point. 

 

Figure 8.5 shows that the addition of noise does not cause the algorithm to exhibit any 

apparent numerical drift over time.  However, if a large amount of noise is added then 

the god-object will move around a central position.  This occurs since the god-object 

will continually move outside of the friction circle and will constantly be repositioned.  

Although the god-object will be constantly moving the algorithm is still drift free 

since it will always be moving around a centralised point, i.e. the sum of the error 

over time will equal 0.  If the Friction Cone Algorithm was used with both the static 

and dynamic friction coefficients set to 0, then the god-object movement would be 

identical to the haptic interaction point’s movement.  This would be the same as using 

the original God-Object Algorithm of Zilles and Salisbury [Zilles95].   
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8.2 Case Histories 

Throughout the time that this research was being conducted, more than 1000 people 

tried the Phantom3 demo with either two or three fingers.  The demo contained 3 

parts: a ball and a hoop where the user was encouraged to pick up the ball and throw it 

into the hoop; a cube that would rotate freely allowing the user to pick it up, rotate it 

and place it back down on the surface; 2 cubes of different sizes but the same weight. 

 

The demo was shown to the general public at the following places: 

• University Open Days, 2002 - 2006. 

• The Science Museum, London, 2004. 

 

It was shown to businesses with an interest in VR and Haptics at the following events: 

• University Business Reachout Days, 2002 – 2006. 

• VentureFest Business Fair, Oxford, 2004. 

 

It was also shown at the following conferences: 

• Haptic Symposium Chicago, 2004. 

• EuroHaptics, Munich, 2004. 

• International Conference Series on Disability, Virtual Reality and Associated 

Technologies, Oxford, 2004 

• International Workshop of Experts in Assistive Technology for 

Neurorehabilitation, San Sebastian, 2004 

• Strategic Promotion of Ageing Research Capacity Conference, Reading, 2005. 

 

8.2.1 Case History 1 

The age range of the people that tried the demo was 70 years (9 – 79 years old).  In all 

cases, everybody that tried to pick up a virtual object succeeded and the majority of 

the participants (roughly estimated at around 85%) were able to pick up the ball and 

successfully throw it into the hoop.  Since the majority of the people that tried the 

demo had never had any previous exposure to haptic devices yet were still able to 

quickly master grasping and throwing an object this suggests that the system is both 

realistic and intuitive to use.  Of interest was that the younger children didn’t need any 
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instruction on how to use the system, they just instinctively reached for the ball and 

then tried to throw it in the hoop whereas some of the older people were scared of the 

technology to begin with and so needed more guidance before they became adept at 

grasping and manipulating the virtual objects. 

 

8.2.2 Case History 2 

The demo contained two different sized cubes with the same weight that were fixed so 

that they wouldn’t rotate.  Of the people that tried to pick them up approximately 50% 

of the people would perceive that the smaller cube was heavier whilst the others 

would not notice any difference.  This aspect of the demo was designed to be similar 

to the size-weight / grip span-weight illusion and the results are similar to what is 

expected in the real world illusion. 

  

8.2.3 Case History 3 

Whilst the system was being demonstrated at EuroHaptics 2004, a senior haptics 

researcher was interested in how we were simulating the torsional friction between the 

virtual fingers and the grasped object.  He was convinced that he could feel the 

grasped cube rotating between his fingers and was interested in the type of actuators 

we were using to present that feeling of rotational slip.  Since no rotational 

measurements or actuation was present, this feeling can only be put down to the 

interplay between the residual force and residual torque in the object causing the 

object to rotate down.  Incidents like this show that the realism that was achieved by 

the algorithms was high, especially since it was somebody that had many years 

experience working with haptic devices that was fooled. 

 

8.2.4 Case History 4 

Since 2005, the Friction Cone Algorithm has been the main friction mechanism used 

in the Chai 3D haptics library [CHAI3D] developed at Stanford University.  From the 

release notes: 
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3/26/2005 - dmorris 

 

* Lots of changes to the proxy: 

  * Now uses the Melder friction model for static and dynamic friction; 

    previously two friction models were mixed in a way that didn't 

    really represent static and dynamic friction. 

 

The Chai 3D library has since been used by many research institutes including 

Stanford University, Purdue University, University of Ottawa, ETH Zürich and the 

Korea Institute of Science and Technology (see [CHAI3D] for a complete list).   

 

Of particular interest is the research that has been conducted which utilises this 

library’s implementation of the Friction Cone Algorithm.  Ruffaldi et al [Ruffaldi06] 

describe a set of standardised tests inputs and data that can be applied to any haptic 

rendering algorithm in order to be able to do like for like comparisons between 

different algorithms.  Of significant note is their use of real world data gathered 

through a force sensor.  This data consists of the 3D position of the end point and the 

3D force returned by the force sensor.  By inputting this position data into the testbed, 

the RMS force error generated using the haptic rendering algorithm can be calculated.  

Their test showed that with friction disabled the RMS force error was 0.132N whereas 

with a friction radius of 0.3008mm the RMS force error fell to 0.067N. 

 

The widespread usage of the Chai 3D library (and hence the Friction Cone Algorithm) 

throughout the haptics community demonstrates that the developed rendering 

algorithms have been tested in numerous different applications and have now become 

accepted throughout the haptics community as being fundamentally correct.   

 

On a side note, the actual implementation of the Friction Cone Algorithm in Chai 3D 

is very inefficient since it requires two cosine calculations and a tangent calculation.  

These trigonometric calculations are both computationally expensive and completely 

unnecessary.  Furthermore, by no longer being fully vector based it is not possible for 

the processor to use any SIMD instructions that it may otherwise have been able to 

utilise (i.e. the compiler will not be able to optimise the code for single instruction 

multiple data). 
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8.2.5 Case History 5 

After seeing and using our demo at the Haptics Symposium in Chicago, 2004, 

Sensable (the makers of the Phantom Hardware) were so impressed by the ease of use 

and haptic realism of the demo that they approached the department with regard to 

acquiring it.  This was so that they could incorporate it on their trade stand at the 

conferences that they would subsequently be attending. 

 

8.2.6 Case History 6 

From Section 5.3.2 the Residual Torque Algorithm gives: 

 

 A Bω = −�  [8.1] 

 

where 1 TA RJ R T−= , 1 TB RJ R ω ω−= × , J gives the moments of inertia about a 

coordinate frame at the object centre of mass with respect to the body’s 

principal axes, and R is a rotation matrix to rotate this coordinate frame 

into the world coordinate system. 

 

The second term in equation [8.1] is responsible for producing the Coriolis force.  

When an object has different principle inertias and where there is already a large 

angular velocity around a single axis, any rotation in a different axis will create a 

Coriolis force perpendicular to the desired direction of motion.  In the Phantom3 

application, it is possible to hold a spinning object, perform this action and briefly feel 

the Coriolis force.  Unfortunately, the inclusion of the second term in the calculation 

is numerically unsafe and numerical errors quickly build up causing the angular 

velocity in the primary axis to tend towards infinity and the simulation to shut down. 

 

8.3 User Applications  

During the development of the Phantom3 haptic engine, a number of applications 

were also developed to investigate specific aspects of haptic systems.  These 

applications are described below.  It was my responsibility to develop a system that 

was flexible so that it could be adapted for a number of different applications and 
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experiments.  In all cases, I had limited input in the design of the actual applications / 

experiments.  

 

8.3.1 The Psychological Perception Experiments 

One of the goals in the creation of Phantom3 was to enable perception based 

psychological experiments to be run.  The overall aims of these experiments were to 

determine whether haptic systems and virtual environments were perceptually 

equivalent to the real world and how important the inclusion of touch is in pick and 

place tasks compared with just using different visual cues.  It was further required to 

see the effect of using single finger interaction vs. multiple finger interaction.  

 

In order to accomplish this goal an ‘experiment manager’ was incorporated into 

Phantom3 specifically for use in the various experiments.  It contains all the logic 

required for running a specific experiment as well as the necessary ancillary functions 

such as file loading and saving and event timers.  Each new experiment required that 

this manager was rewritten to take into account the new experiment’s requirements. 

 

8.3.1.1 Psychophysical Size Discrimination Using Multi-Fingered 
Haptic Interfaces  

This psychological experiment was carried out with McKnight[McKnight04].  The 

goals were two fold: 1. to determine whether there is a correlation between results 

generated in psychophysical size discrimination experiments in the real world with a 

similar test in the virtual, haptic enabled world, and 2. to determine if there is a benefit 

to using more than two fingers in size discrimination tasks. 

 

In order to assess the user’s ability to determine size differences a two alternative 

forced-choice methodology was implemented.  Participants were required to judge, 

using touch alone, which of two haptically rendered spheres was the larger.  Two 

studies were carried out utilising a two-fingered grasp and a three-fingered grasp 

condition.  Spheres were chosen since it was felt that they would be more in keeping 

with the natural characteristics of the grasp position.  The spheres were presented 

within the same time interval in two spatial locations, side by side and with a 5 cm 

gap between them.  One of the haptically rendered spheres (the reference or standard 
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stimulus) was 5 cm in diameter, the other sphere varied in 0.5 mm increments, from 

4.7 cm to 5.3 cm diameter.  There were a total of 132 stimulus trials (six size 

differences twenty-two times each).  To counteract any effects that the presentation 

order may have both sphere position (left/right) and presentation order were randomly 

assigned.  A visual aid was used to help subjects in locating the haptic spheres. This 

took the form of graphical spheres displayed via a computer monitor (see Figure 8.6).  

The graphical spheres were positioned to fully enclose the haptically rendered spheres 

thus, not allowing any visual aids to affect judgment.  Thumb and fingertip positions 

were represented by two/three yellow dots. 

 

  

Figure 8.6: The left image shows the visual aid shown to the subject while the right image shows the 

location of the haptically rendered test spheres (shown inside the visual spheres).  The three small 

spheres are the haptic interaction points. 

 

After a period of familiarisation subjects were exposed to a total of 132 stimulus pairs 

with their choices being recorded by the computer via keyboard input.  After each 

choice was made participants were given feedback, via the user interface, as to 

whether they were correct or not.  

 

The results of the experiments showed that the just noticeable difference (JND) of the 

two sizes is comparable to real world object size discrimination.  From this it can be 

said that size comparison judgements using multi-fingered haptics can be on a par 

with real object size perception, implying that the haptic device does a good job of 

simulating reality in this case.   
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Furthermore, the results imply that high-fidelity multi-fingered haptics using the 

Friction Cone Algorithm, does a good job of simulating reality and that it can be used 

in making experimental comparisons between real and virtual haptics for object 

extent.  The findings also indicated that using three fingers provides greater accuracy 

over two fingers. 

 

For more details about this experiment see [McKnight04]. 

 

8.3.1.2 Perceptual Cues for Orientation in a Two Finger Haptic Grasp 
Task  

Working with McKnight[McKnight05], the goal of this psychological experiment was 

to determine the effects of various cues, both visual and haptic, in a task involving 

picking up an object, moving it to a specific location and then orienting it correctly.  

For this experiment, Phantom3 was adapted to allow the Phantoms to be used purely 

as an input device (i.e. without force feedback enabled).  This required that the force 

and torque being applied to the manipulated object were modified so as not to allow 

large forces and torques to be generated due to the potentially large penetration depths 

of the haptic interaction points.  Further amendments were also made to show a more 

visual representation of where objects were in collision, by changing the colour of the 

region that was in contact. 

 

This experiment required subjects to complete a pick and place task that involved 

picking up a non-symmetrical object and placing it correctly in a defined position and 

orientation.  The task was performed both with and without haptic feedback and with 

a range of visual cue combinations, including shadows and stereoscopic presentation.  

The quantitative metrics of time taken and positional accuracy were used to assess 

performance. 
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Figure 8.7: A screenshot of the experimental scene.  The large capsule was to be grasped, oriented and 

placed in the hole (ring).  The ‘ears’ on the capsule were there as a visual aid to indicate the orientation.  

Note that the shadows are cast from an angle of 45 degrees.  The small spheres are the haptic 

interaction points. 

 

In the non-haptic condition, collisions between the capsule and the ring were disabled.  

It was also possible to complete the task in a non-visual mode but this condition was 

not tested as it was thought that not enough of the subjects would have enough 

familiarity with the hardware to gain meaningful results. 

 

This experiment showed that the addition of haptic feedback resulted in much lower 

positional errors in the placement of the capsule.  Since this experiment used both the 

Friction Cone Algorithm and the Residual Force / Torque algorithms this suggests 

that the algorithms were able to provide a convincing simulation to the users. 

 

More details on this experiment can be found at [McKnight05]. 

 

8.3.2 Exploring Haptics in Immersive CAVE Type VR 

This work was done with M Seelig and D Roberts of the VR group at the University 

of Reading. 

 

The Distributed Interactive Virtual Environment (DIVE) is an internet-based multi-

user VR system.  A long time research project in the University of Reading’s VR 

research group was to look at how multiple users could collaborate in a virtual 

environment to complete a specific task.  The task was to build a virtual Gazebo 
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where multiple users would be required to pick up, position and drill the virtual 

planks.  As part of this project it was desirable to see if the addition of haptics could 

be used to improve the experience, speed and accuracy of this collaborative task.  

Working with Roberts and Seelig, a network interface to the DIVE system was 

created in Phantom3 (the DIVE Message Router) and a DIVE plugin was written to 

interface between the two applications.  The collaborative aspect (including the 

creation of the DIVE haptic plugin) was part of an MSc undertaken by Marcel Seelig.  

Full details of this research can be found in [Seelig03].  As a direct result of the initial 

work that I did on the Haptic - DIVE interface further research was possible in the 

area of closely coupled collaboration in VR with Haptics [Seelig04]. 

 

In order to create the interface between DIVE and Phantom3, the DIVE message 

router was created.  This is a bidirectional interface and is responsible for receiving 

messages from the DIVE system and then distributing them to the relevant systems 

for processing as well as sending messages to it when various application events 

occur.  The different message types that can be received by the Haptics Application 

include: Initialisation, Object Creation and Deletion, Grasp and Release of an Object, 

Object movement.  The DIVE Message router as also used to send messages from the 

Haptics Application to DIVE to indicate when an object had changed position so that 

it can be updated in the Distributed Virtual Environment. 

 

When an object was created in DIVE a haptic object would also be created inside 

Phantom3.  This object could then be manipulated using the haptic devices and the 

objects new position and orientation would then be passed back to DIVE for 

rendering.  When Phantom3 was interfaced with DIVE it created no graphical output; 

the graphics rendering was done by DIVE.  Phantom3 was also used as the physics 

engine to provide advanced physics to any non-contacted objects since there was no 

inbuilt physics simulation in DIVE.  This allowed objects to fall correctly and bounce 

when objects were released. 

  

8.3.3 Creating Impossible Objects 

Due to the way that the Friction Cone Algorithm works and the ability to have 

different graphical and haptic representations of an object, impossible objects and 
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mathematical curiosities have been able to be constructed and manipulated in 3D.  

These included a Klein bottle and a ‘TARDIS’ object. 

 

 

Figure 8.8: The Klein Bottle is a single sided, four dimensional object. Note that the above image has 

had a strip removed from it in order to better show its topology. 

 

A Klein bottle is a four dimensional, single sided object.  In order for it to be rendered 

correctly, where the neck intersects the flask only one surface should be apparent at a 

time, i.e. whilst moving down the neck the flask will not exist (allowing the user to 

move ‘inside’ the bottle).  In the real world this is not possible since as we move 

down the neck to the flask we will physically collide with the flask but, since the 

Friction Cone Algorithm uses a volumeless point of contact this does not occur and 

the Klein bottle is rendered correctly. 

 

8.3.4 The Small Creature Veterinary Prototype 

Dr Sarah Baillie, (currently a veterinary surgeon and senior lecturer in veterinary 

education at the Lifelong Independent Veterinary Education Centre, UK) wanted to 

see whether it would be feasible to use multiple Phantoms in order to train veterinary 

students to identify different problems with small creatures (such as cats and dogs).  

Using Phantom3 it was possible to create a scene to simulate a cat with renal 
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problems where the user would stroke the side of the cat, be able to feel the kidneys 

underneath a skin like layer and then determine if the kidneys felt healthy (due to their 

positioning and size).  Because of the success of this initial prototype work a full scale 

‘feline’ mixed reality simulator has since been created [Parkes09]. 

 

8.3.5 The Electromyogram (EMG) / Reach and Grasp Data 

Recorder 

Working alongside colleagues from the Department of Cybernetics, Phantom3 was 

adapted to record finger positions and forces in a reach, grasp and place task.  From a 

fixed starting position, the subject was expected to reach over a high obstacle, grasp a 

ball and then lift it back over the wall to place it at a desired end position.  This was 

repeated a number of times with the weight of the ball changing.  Whilst the subject 

was doing the task their muscle activity was also being measured using an EMG.  The 

results and conclusions of this work are still ongoing although initial results can be 

found in [Louriero09] 

 

8.3.6 The Virtual Shopping Experience 

Working to create a virtual shopping experience with Barrow, a VR specialist from 

Proctor and Gamble, Wann and Butler from the Psychology department at the 

University of Reading, the Phantom3 application was adapted to load and display 

plan-o-gram data.  Plan-o-grams are used to create store shelf layouts where each 

product has physical characteristics (including dimension and weight) that enables 

them to be manipulated haptically.  However, due to the volume of objects in a typical 

shelf layout scene, these large shelve layouts could not be rendered haptically at an 

acceptable update rate.  Smaller plan-o-grams (with up to 10 items per shelf) were 

successfully loaded and rendered both visually and haptically. 

 

8.4 Perceptual Results  

The two psychophysical perception tasks carried out by McKnight [McKnight04] 

[Mcknight05] detailed in Section 8.3.1 used the Friction Cone Algorithm and 

Residual Force / Torque Algorithms for friction modelling and object movement. His 
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results from the size discrimination task [McKnight04] showed that high-fidelity 

multi-fingered haptics using the Friction Cone Algorithm does a good job of 

simulating reality and that it can be used in making experimental comparisons 

between real and virtual haptics for object extent. The results of the task orientation 

tests [Mcknight05] showed that the addition of haptic feedback resulted in much 

lower positional errors in the placement of the capsule. Since these experiments used 

both the Friction Cone Algorithm and the Residual Force / Torque Algorithms this 

suggests that the algorithms were able to provide a convincing simulation to the users.  

From this it can be concluded that even if the Friction Cone Algorithm and the 

Residual Force / Torque Algorithms are not 100% accurate, their accuracy is greater 

than then perceptual threshold of the users, i.e. it is accurate enough to provide a 

convincing simulation. 

 

8.5 Chapter Summary 

This chapter has presented a set of subjective and objective results that shows that the 

systems and algorithms developed and presented in this thesis work correctly both in 

theory and in practice.  The experimental results show that the Friction Cone 

Algorithm is robust to noise and drift free.  In fact, the addition of noise has no effect 

on the algorithm’s ability to simulate the desired friction model.  These results also 

show that in the presence of noise, and hence small movements, the algorithms are 

drift free i.e. over time the output will not change due to the build up of any error 

within the system. 

 

Due to the subjective nature of haptics, a number of case histories have been detailed 

which demonstrates a number of aspects of the system as well as showing some of the 

short comings.  Case history 1 explains how the vast majority of people that used the 

system, many of whom had never used a haptic system before, were very quickly able 

to successfully complete a relatively complex task (picking up a ball and throwing it 

into a hoop); this demonstrates the intuitiveness of the developed system.  Case 

history 3 describes how a senior haptics researcher was convinced that torsional 

friction was being displayed to the user via some external actuators that weren’t 

present; this demonstrates that the interplay between the Residual Force / Torque and 

Friction Cone Algorithms were able to create a very realistic simulation of the real 
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world.  Case history 4 describes how the Friction Cone Algorithm has been integrated 

as the main friction implementation in an open source haptics library that is used by a 

large number of institutions in a wide variety of applications; this shows both the 

adaptability and acceptance of the Friction Cone Algorithm amongst the wider haptics 

community. 

 

To further demonstrate the flexibility of the developed system and algorithms, a 

number of the applications that were developed are described.  These included various 

psychophysical experiments, a veterinary simulation, the creation of impossible 

objects as well the integration of haptics into other VR systems. 

 

This chapter concludes with a summary of the results of the psychophysical 

experiments run by McKnight.  These show that the results achieved using the 

developed haptic system are interchangeable with previous real world results and that 

the addition of multi-finger haptics can improve the positional accuracy when placing 

and orienting an object.  This demonstrates that the use of the Friction Cone 

Algorithm, the Residual Force / Torque Algorithms and the Phantom3 application are 

able to provide a convincing simulation to the user since the results are comparable 

with the real world. 
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9 Discussions, Further Work and Conclusions 

This final chapter discusses the research undertaken and presented in this thesis 

showing how they compare with previous rendering algorithms and models and how 

they improve upon them.  Further areas of research are also suggested which includes 

how the Friction Cone Algorithm can be applied to constructive solid geometry as 

well as improvements that can be made to the current system, before concluding with 

a brief summary of the main features detailed in this thesis. 

 

9.1 Discussion 

The goal of the research presented in this thesis was to develop a set of algorithms 

that allowed for the natural manipulation of virtual objects using multiple fingers.  In 

order to achieve this goal it has been necessary to develop haptic rendering methods 

that simulate friction as well as methods that allow for the translation and rotation of 

the grasped virtual objects.  To achieve this end the Friction Cone Algorithm and 

Residual Force / Torque Algorithms were developed. 

 

Since the initial publication of the Friction Cone Algorithm in [Melder02] it has 

gained popularity.  Its usage has been further enhanced and adapted by Barrow 

[Barrow06] as well as being the main friction algorithm used in the CHAI3D haptics 

library [CHAI3D].   

 

Features of the Friction Cone Algorithm include: 

1. It is robust to noise and free of numerical drift (as shown in Section 8.1). 

2. Its parameters have a simple physical interpretation.   

3. It is not an accurate model of friction (and never was intended to be) but is 

optimised to run in real time and to be computationally efficient (by being 

entirely vector based). 

4. It gives a natural set of force vectors for a multi-contacted object which 

can be combined with other force vectors (such as gravity) and hence the 

Residual Force / Torque Algorithms to give a natural way to estimate 

position and orientation in a stable fashion. 
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5. It is designed to be flexible and so allows for an arbitrarily complex 

friction model to be modelled accurately (with minimal extra processing 

overhead). 

 

In order to improve the realism of the virtual world, the Friction Cone Algorithm can 

be adapted to allow it to model any arbitrarily complex friction model.  In its usual 

implementation it only models Coulomb friction but with some simple additions it has 

been shown how it can be adapted to model stick-slip friction with an additional 

viscous component (see Section 4.1.1).  Methods have also been given that allow the 

Friction Cone Algorithm to be applied to simple, parametric objects (including 

NURBS surfaces) as well as to complex polygonal meshes through the use of Face 

Directed Connection Graphs.  For polygonal meshes, Force Shading has been 

presented that smoothes the transition between polygon edges removing the 

discontinuity that would normally result. 

 

Modelling complex friction with the Friction Cone Algorithm has a number of 

advantages over previous methods.  The method of simulating friction described in 

[Salcudean95] is independent of the normal force applied at the contact point, i.e. the 

state change to slip only occurs when the tangential force exceeds a previously 

defined amount, the Friction Cone Algorithm uses the normal force to determine the 

tangential force that is required.  However, if it is required that the static frictional 

force is independent of the normal force then this can be achieved by using a fixed 

size friction cone.  Similarly, since haptic devices are dependant upon their sensor 

resolution, measuring near zero velocities is difficult.  Since the velocity is not 

required by the Friction Cone Algorithm for state transitioning, this issue is irrelevant.  

Additionally, since velocity is not required the added computation required to 

calculate the velocity is also not required.  The Friction Cone Algorithm has also been 

shown to be both drift free and robust to noise.  This is of note since some of the 

friction models developed have been particularly susceptible to noise and drift, in 

particular the Dahl model [Dahl76] and subsequent friction models that have been 

based upon it. 

 

For polygon based models, using face directed connection graphs and their Voronoi-

like regions to determine transitions are advantageous since precision errors are no 
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longer problematic.  [Ruspini97] described the phenomenon of ‘falling through the 

cracks’ that occurs with a volumeless point based interaction point where these cracks 

are due to precision errors.  Their solution is to use a proxy with a finite volume that is 

larger than the cracks.  Using the Voronoi planes solves this problem since transitions 

are determined by the god-object’s position relative to the infinite Voronoi planes and 

not the actual surface it is on.  It is still possible to use the Friction Cone Algorithm 

with a volume instead of a volumeless proxy and this is described in Section 6.3. 

 

Transitions across polygon edges are also problematic in haptic rendering and 

instabilities are commonly found in many implementations.  These instabilities occur 

when the haptic interaction point moves under an edge on a convex surface and 

manifest when slight variations back and forth under the edge causes the god-object, 

and hence the force, to jump abruptly between the two adjacent faces.  This results in 

an unnaturally rough edge or a sensation of ‘buzzing’.  Using face directed connection 

graphs this cannot occur.  Whilst on a plane, the god-object must cross a Voronoi 

plane to transition onto an edge and then the face that is closest to the haptic 

interaction point becomes active.  Since the Voronoi plane that must be crossed is 

perpendicular to the active face, after transitioning across an edge the active face 

changes and so a different Voronoi plane is used.  This is illustrated in Figure 9.1 

where all coefficients of friction are set to 0 (i.e. a frictionless contact is rendered).  
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Figure 9.1: As the god-object crosses the Voronoi plane the god-object is first repositioned on the edge 

and then repositioned on the closest face to the HIP.  Since different Voronoi planes are used, the HIP 

will always be closest to the oncoming face and so oscillation between two adjacent faces will never 

occur. 

 

Since the polygon rendering method does not rely upon determining the closest 

feature to the haptic interaction point (as in [Zilles95]) and the haptic interaction point 

is without volume (unlike [Ruspini97]) impossible objects such as a klein bottle can 

also be created and rendered correctly.  For a klein bottle to be rendered correctly, 

where the neck intersects the flask only one surface should be apparent at a time, i.e. 

whilst moving down the neck the flask will not exist (allowing the user to move 

‘inside’ the bottle) and while moving around the belly of the flask the users should not 

be interrupted by the neck.  In the real world this is not possible since as we move 

down the neck to the flask we will physically collide with the flask and will not be 

able to enter it. 

GO moves towards an edge GO crosses voronoi plane and 

is repositioned on edge.   

The face closest to the HIP is 
made active and the GO is 

repositioned on this face 

= Voronoi region of active polygon 

= Voronoi plane of active polygon 

= God-Object (GO) 

= Haptic Interaction Point (HIP) 

= Spring that force is directed along  = Face that is closest to HIP  
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Figure 9.2: The Klein Bottle is a single sided, four dimensional object with similar properties to the 

mobius strip since both of these objects posses only one side. Note that the above image has had a strip 

removed from it in order to better show its topology. 

 

With the addition of the Residual Force / Torque Algorithms, virtual objects can be 

grasped, lifted, manipulated and placed.  Since these algorithms work on the internal 

(residual) force/torque in the object it does not matter what causes these forces and 

torques, i.e. they are agnostic as to whether the force is derived from a contact with 

the haptic interaction point or it is caused by some other source (such as gravity, or 

contact with another object).  In this way, picking up and placing an object can be 

simulated in a physically correct manner simply by including any forces that are 

applied through contacts between the object and the surface that it is being 

placed/lifted from.  When picking up or placing an object it is the interplay between 

the Residual Force / Torque Algorithm and the Friction Cone Algorithm that 

generates the realistic feeling associated with object placement.  This is further 

enhanced with the addition of torsional friction between the finger contact points that 

allows the user to grip an object harder to stop it from rotating between the points of 

contact.   

 

Using the Friction Cone Algorithm and the Residual Force / Torque Algorithms allow 

for rotate down/up behaviour and gravity induced drop to be modelled.  Being able to 
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simulate these object behaviours is important since it allows the software simulation 

to accommodate deficits in the actual haptic hardware which allows for a fuller 

simulation of the real world to be achieved with the limited haptic hardware. 

 

The work done with McKnight (see Section 8.3.1) and the Case Histories given in 

Section 8.2 serve to validate the intuitiveness of the developed algorithms.  McKnight 

showed that the haptic simulation using the Friction Cone Algorithm does a good job 

of simulating reality and that it can be used in making experimental comparisons 

between the real and virtual world.  He also showed that haptics is important in 

precision manipulation tasks and that the use of three fingers are better than two when 

it comes to object size estimation.  The case histories show that the use of the Friction 

Cone Algorithm and the Residual Force / Torque Algorithms are intuitive to use as 

the vast majority of the general public where able to quickly grasp and manipulate the 

presented objects as well as successfully throw a virtual ball into a hoop.  Additional 

effects were also being created through the interplay of the Residual Force and 

Residual Torque Algorithms that allowed for the user to experience rotational slip, 

even though there was no additional actuation involved.  The ability of a large 

percentage of the users to experience the virtual size weight illusion also shows the 

realism achieved in the simulation. 

 

The key result that can be taken from Chapter 7 is that all the algorithms developed 

are stable and robust.  This is arguably the most important aspect of any developed 

haptic rendering algorithms since an unstable haptic rendering algorithm will quickly 

destroy the illusion of grasping a real object as it may either introduce vibrations into 

the simulation, cause random force discontinuities to be presented to the user 

unexpectedly, or cause the grasped objects to move erratically without the users input 

(as would occur if the algorithms were not drift free). 

 

9.2 Further Work 

There are two areas where this research can be expanded into: the use of the Friction 

Cone Algorithm with other 3D model representations and the use of a volumetric 

proxy with the Friction Cone Algorithm.  A proposal for how the Friction Cone 

Algorithm can be applied to CSG trees (Constructive Solid Geometries) is presented 
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in Section 9.3 based upon previous work by Raymaeker and Reeth [Raymaekers02].  

The ability to use the Friction Cone Algorithm with complex NURBS surfaces is also 

another area that would benefit from further investigation.  The work done in the 

initial investigation detailed in Section 4.2.2 has since been further expanded in 

[Hong06].  With the addition of CSG and NURBS rendering, the main 3D data 

representations would all be useable with the Friction Cone Algorithm. 

 

Another potential area of research is to replace the volume-less haptic interaction 

point with a volumetric representation of the user’s fingers.  This would make the 

system more intuitive to use, especially when tracing around the edges of an object.  

The use of a volumetric proxy such as a sphere would allow the user to feel sharp (as 

in non-curved) edges of an object without falling off the edge of the object as 

currently happens with a volume-less proxy.  Instead, as the user crosses over the 

edge, the change in direction of the force being applied to the proxy allows the user to 

feel around the edges.  In the Phantom3 application it is already possible to feel this 

affect simply by picking up an object and then using that object to feel the shape of 

another object.  Currently, this interaction is frictionless but it should be possible to 

adapt the Friction Cone Algorithm to allow for the inclusion of friction between 

multiple object contacts.  This area has since been expanded by Barrow in 

[Barrow06]. 

 

9.3 CSG Rendering with the Friction Cone Algorithm 

 

Constructive Solid Geometry (CSG) is a modelling format that is used primarily in 

automation procedures since many manufactured objects can be represented by a 

combination of simple basic primitives.  These complex objects are created by 

applying one of three boolean operations on simple, mathematical objects: 

intersection (∩ ), union (∪ ) and difference ( - ).  Raymaekers and Van Reeth 

[Raymaekers02] showed how this representation of objects could be rendered 

haptically without friction.  CSG is used in cases where simple geometric objects are 

desired, or where mathematical accuracy is important.  They have a number of unique 

properties over boundary representations such as 3D polygonal meshes.  One 

advantage is that a CSG model guarantees that the object is “solid” or water-tight if all 
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of the primitive shapes are water-tight which may be an important consideration for 

some manufacturing or engineering applications. Unlike boundary representations 

additional topological data is not required, and consistency checking is unnecessary to 

ensure that the given boundary description specifies a valid solid object. 

 

Another advantage that CSG has is that it is computationally simple to determine 

whether an arbitrary point is inside the CSG. The point is compared against the 

underlying primitives and the resulting boolean expression is evaluated. The 

computational simplicity makes collision detection between a point and CSG very 

quick especially when compared with an equivalent 3D polygonal mesh. 

 

Figure 9.3: By applying boolean operators with simple primitives, complex shapes can be easily 

generated [wwwCSG]. 

 

At the time that this research was started constructive solid geometries were difficult 

to produce since it was only supported in high end modelling products such as 
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Autodesk’s 3D Studio Max [www3DSMax09] which had a closed file format.  This 

meant that it was not possible to easily generate CSGs to use in haptic rendering.  

However, now that a number of cheap/free game engines with readily available file 

formats are available (including the Unreal Engine [wwwUnreal09], the Source 

Engine [wwwSource09] and the Torque Game Engine [wwwTorque09]) this is no 

longer an issue.  This will likely also increase the number of CSG models that are 

available and so it would be advantageous for the Friction Cone Algorithm to support 

this file format.  Because of this, the proposed method for rendering CSG models is 

given. 

 

The proposed haptic rendering method requires three steps: 

1. Determine initial collision and set god-object. 

2. Generate list of connected primitives. 

3. Determine if the god-object requires moving. 

 

Once the initial collision between the haptic interaction point and the object has 

occurred, the god-object is set as per usual (i.e. at the initial point of collision).  If the 

collided primitive (i.e. a leaf node in the CSG tree) was not returned by the collision 

detection algorithm then this must also be found.  By traversing the CSG tree, a list of 

all the primitives connected to this contacted node can then be created. 

 

Once the contacted primitive and the connected primitive list have been determined 

the Friction Cone Algorithm is applied until the god-object needs to be repositioned. 

If the new position of the god-object no longer lies within the active confines of the 

contacted primitive then a boundary transition has occurred, otherwise the god-object 

is repositioned as previously calculated. 

 

Although cubes and prisms are CSG primitives, in terms of the haptic rendering it is 

advantageous to consider them as CSG trees consisting solely of planes. 

 

9.3.1 CSG Boundary Transitions 

As the god-object moves across the object’s surface its state will change depending 

upon whether it is on a primitive, an edge or a corner.  The object’s state determines 
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what rendering algorithm should be applied and the boundary transitions determine 

the god-object’s state. 

 

There are two types of boundary transition; those that effectively reduce the apparent 

number of degrees of freedom (the degenerate transitions) and those that increase the 

apparent available degrees of freedom (the regenerate transitions).  Figure 9.4 shows 

the state diagram for the god-object with all possible transitions shown.  An edge is 

defined as being the intersection between two primitives and a corner is defined as a 

point where three or more primitives intersect. 

 

Figure 9.4: State transition diagram showing how the god-object’s state changes.  The arrows 

represent the different possible boundary transitions where the black arrows are the degenerate 

transitions and the grey arrows are the regenerate transitions. 

 

As will be shown, the degenerate transitions are determined by how the god-object 

moves while the regenerate transitions are determined by the movement of the haptic 

interaction point.   

 

9.3.1.1 Free-Space to Primitive Transitions 

This is determined by the collision detection algorithm and will define the initial 

primitive. 

 

9.3.1.2 Primitive to Edge Transitions 

A primitive to edge transition can be tested by determining whether the god-object has 

crossed into an adjacent primitive’s volume.  Although this is very efficient 

P 

FS 

E C 

FS = Free-Space  P = Primitive  E = Edge  C = Corner 
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computationally, it is not capable of determining transitions across coplanar 

boundaries.  A more robust approach is to examine the vector between the original 

god-object and the proposed god-object and determine if this vector intersects any of 

the connected primitive’s boundaries (i.e. ray-primitive intersection test).  

Unfortunately this method also has the same problem when two adjacent planes are 

coplanar.  When this is the case it becomes necessary to generate a ‘boundary’ plane 

along the edge between the two objects.  The god-object is then checked against this 

boundary to determine if a transition has occurred.  If a transition has occurred then it 

is necessary to reposition the god-object onto the edge between the two primitives. 

 

The method used to calculate the ‘on edge’ god-object is dependant upon whether the 

originating and target primitives are flat or curved.  In all cases GO1 is the original 

god-object located on the active primitive, GO2 is the proposed god-object and 

GOedge is the god object repositioned onto the edge.  The primary primitive is the 

primitive that is currently active and the secondary primitive is the primitive that is 

forming the edge. 

 

 

Figure 9.5: Primitive to edge transition: planar surface to curved surface. 

 

For a planar to planar transition or a planar to curved transition (e.g. plane to sphere) 

GOedge is given by the intersection of the vector GOvec = GO2 – GO1 with the 

secondary primitive (see Figure 9.5). 

 

= GO1                 = GO2         = GOedge 

= GOvec 
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Figure 9.6: Primitive to edge transition: curved surface to planar surface.  The god-objects have 

been projected onto the secondary primitive. 

 

For a curved to planar transition (e.g. sphere to plane) both GO1 and GO2 should be 

projected onto the secondary primitive in the direction of the plane’s normal to give 

PGO1 and PGO2.  GOedge is then given by the intersection of the vector PGOvec = 

PGO2 – PGO1 with the primary primitive (see Figure 9.6).  

 

It is not possible to determine the exact position of GOedge between two curved 

surfaces without using iterative methods.  Instead, a good approximation can be 

calculated by finding the intersection of the vector GOvec with the secondary 

primitive.  Due to the high update rates required by haptic rendering, human 

perception and the discrete nature of the position encoder, this error should be 

imperceptible. 

 

9.3.1.3 Edge to Corner Transitions 

While the god-object is on an edge it is being influenced by the two connected 

primitives.  An edge to corner transition will occur when the god-object intersection 

vector (GOvec) intersects a third primitive.  GOedge is simply defined as the 

intersection between GOvec and this third primitive.   

 

      = GO1                  = GO2                       = PGO1                   = PGO2 

   

                         = Sphere’s tangential plane 
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9.3.1.4 Primitive to Free-Space Transitions 

While the god-object is on a primitive the Friction Cone Algorithm is being applied to 

a plane.  In order for a transition to free-space to occur, the haptic interaction point 

must move in front of this plane.  

 

9.3.1.5 Edge to Free-Space Transitions 

When on an edge the Friction Cone Algorithm effectively constrains the god-object 

between two planes representing the adjacent primitives. 

 

There are two types of edge to free-space transition: when the edge is acute and 

convex, and when it is not. 

 

Figure 9.7 shows the position of the haptic interaction point and the god-object when 

an acute, convex edge is first made active (i.e. the edge has been made active but no 

transitions have yet been determined).  If the haptic interaction point is in front of one 

connected face plane and behind the other face plane than an edge to free-space 

transition will occur. 

 

The second edge to free-space transition occurs when the haptic interaction point is in 

front of both of the connected face planes at the same time 

 

 

Figure 9.7: An Edge – Free Space transition. 

 

=  God-Object attached 

  to edge 

=  Haptic Interaction  

=  Generated face  

  normal 

=  Spring that 
  force is directed  
  along 
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9.3.1.6 Corner to Free-Space Transitions 

While the god-object is in a corner it will also be in contact with numerous primitives.  

For each of these primitives, a tangential plane is required at the point of contact.  In 

order for a corner to free-space transition to occur, the haptic interaction point must be 

in front of all contacted tangential planes. 

 

9.3.1.7 Corner to Edge / Primitive Transitions 

If the god-object is in a corner, the tangential planes of the connected primitives and 

the connected edge vectors can be calculated if they are not already available.  If the 

haptic interaction point is closer to any of the connected edges/primitives than the 

current corner then a corner to edge/primitive transition will occur onto the closest 

edge/primitive.   No matter the outcome of the transition tests, the god-object does not 

need to be repositioned. 

 

9.3.1.8 Edge to Primitive Transitions 

Similar to the corner to primitive transitions, while the god-object is on an edge, the 

tangential planes of the two connected primitives will be available. If the haptic 

interaction point is closer to either of these planes then the current edge a transition 

onto the primitive associated with the closest plane will occur.  No matter the outcome 

of the transition tests, the god-object does not need to be repositioned. 

 

9.3.2 Discussion of the Proposed CSG Rendering Method 

Implementing the algorithms as described may cause undesirable effects while 

transitioning coplanar and convex boundaries since the god-object is always placed on 

the edge during primitive-edge-primitive movement.  This can be easily remedied by 

recursively changing the state of the god-object (i.e. on a primitive/edge/corner) until 

the god-object no longer requires repositioning.  This requires that the original god-

object is not updated until the proposed god-object comes to rest.  By implementing 

the algorithms in this way, coplanar polygons will always feel smooth, otherwise they 

feel as though they have a 'sticky' ridge where the boundaries intersect.  Similarly, 

convex intersections feel more realistic instead of having a 'sticky' edge. The 
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disadvantage of this recursion is that the code ceases to be deterministic, however, in 

practice, the computational burden of this recursion is low. 

 

Corner to edge/primitive transitions may also appear to be computationally expensive 

to compute especially as it is possible that a large number of primitives may intersect 

at a single corner.  However, even if this is the case, calculating the distance of the 

haptic interaction point to each of the tangential planes / edges can be done in an 

efficient manner using the dot product.  Of more concern may be the time required to 

generate all the appropriate tangential planes when the corner first becomes active.  If 

this delay is unacceptable then the tangential planes can be pre-calculated before 

rendering starts. 

 

9.4 Design Decisions and Features for Phantom3 Version 2 

If this project were to be repeated a number of additions and amendments to the 

implementation design would be made.   

 

The main problem that was approached towards the end of the development of 

Phantom3 was due to the decision to use an object-centric design approach.  Instead, a 

function centric approach would be used whereby all related functions would be 

grouped together (e.g. all collision functions would remain in the collision engine, all 

physics functionality would be in the physics engine, all rendering functionality 

would remain in the render system, etc.).  If an object required collisions, physics, 

rendering then once it were created it would need to be registered with the appropriate 

system.  Internally, each system would maintain a representation of the object specific 

to its functions, e.g. a physics object would represent an in game entity in the physics 

system.  Although more complicated to develop in the early stages of the project, 

using this approach would allow greater flexibility when unexpected features / 

requirements are added.  This method also makes upgrading / replacing systems 

easier, e.g. if a commercial rendering engine were to be used. 

 

A full messaging system would also be desirable.  Various objects would be 

registered with the messaging system along with the type of events that they should 

listen for.  This would simplify setting up experiments where it is necessary to wait 
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for certain events to occur, such as the haptic interaction points being in contact with a 

particular object.  In Phantom3, where this was required, direct access to the object 

had to be given along with special processing code to wait for the required condition 

to be achieved (i.e. two fingers on an object before the experiment could start).  The 

extended messaging system would also broadcast events to any listening system 

whenever they occurred (such as an audio system when a collision occurred).  The use 

of a full messaging system would also aid in inter-thread communications. 

 

Research has shown that the addition of audio is an important factor in our perception 

of objects.  As such it would be desirable to include audio in the next iteration of 

Phantom3.  The audio system would need to run in its own thread and would be 

triggered by the aforementioned messaging system. 

 

Since the Friction Cone Algorithm and Residual Force and Torque Algorithms are 

entirely vector based this gave the option of using the advanced vector maths 

functions found in most modern processors (namely SIMD (single instruction, 

multiple data)).  By using SIMD instructions over the basic single input, single data 

instructions (vector add instead of scalar add) it is possible to achieve speed increase 

of over four times in the vector processing calculations.  Due to the entirely vector 

nature of the developed algorithms, by converting the maths library to use SIMD it 

would be possible to improve the overall performance, and hence the maximal haptic 

update rate.  

 

Further, where possible quaternion implementations of the algorithms would be used.  

This is desirable since quaternions have greater numerical stability than matrices due 

to the fact that they carry less redundant data than matrices (4 numbers with one 

constraint for a quaternion vs. 9 numbers with many constraints).  Since the product 

of many orthogonal rotation matrices will become “skew” over time due to rounding 

errors, as was the case when calculating the residual torques in an object, it is 

necessary that the resultant matrix is “deskewed” on a regular basis.  By using a 

quaternion, the result will never become skewed, it will only become uniformly scaled 

and it is much more computationally efficient to re-normalise a quaternion than it is to 

deskew a matrix. 
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9.5 Thesis Conclusion 

The goal of the research presented in this thesis was to develop a set of algorithms 

that allowed for the natural manipulation of virtual objects using multiple fingers.  To 

this end the Friction Cone Algorithm and the Residual Force / Torque Algorithms 

were developed and have been described within this thesis. 

 

Chapter 4 introduced the Friction Cone Algorithm to the reader which is a mechanism 

that allows for an arbitrarily complex friction model to be simulated.  It has the 

following important properties: 

 

1. It is time free as only positional information is required in its formulation.  

This means that there are no issues when travelling at near zero speeds such as 

when simulating stick-slip friction. 

2. The output is free from numerical drift since the algorithm is time free. 

3. It is robust to noise. 

4. Its parameters have a simple physical interpretation. 

5. It is entirely vector based and does not require any trigonometric functions in 

its formulation.  This makes it a very processor efficient algorithm. 

6. It is designed to be flexible and so allows for an arbitrarily complex friction 

model to be modelled accurately (with minimal extra processing overhead). 

 

It has also been shown how stick-slip friction can be modelled as well as how the 

Friction Cone Algorithm can be applied to various 3D object formats in order for it to 

be used with complex shapes.  With a simple modification to the output of the 

Friction Cone Algorithm it is also possible to improve the realism of the touched 

objects through force shading and bump mapping.  This allows polygonal objects to 

have a smooth feel to them (they would normally feel faceted when crossing across 

the polygon boundaries) or to feel textured.  Finally, the key advantage that the 

Friction Cone Algorithm has over previous haptic rendering algorithms is that it 

incorporates friction into the actual contact algorithm. This means that it is no longer 

necessary to superimpose extra lateral forces to simulate friction on to the output of 

the haptic rendering algorithm.   
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Chapters 5 and 6 explained to the reader how multiple, discrete haptic devices could 

be used together in an intuitive and realistic manner.  A means to calibrate the 

multiple devices to work within the same workspace was given and the Residual 

Force / Torque Algorithms were presented.  Together, these algorithms allow for the 

natural manipulation of a virtual object under multiple contacts.  The differences 

between three finger, two finger and single finger grasps have also been explored and 

a simple method to simulate torsional friction is presented.  In a two finger grasp, this 

simulated torsional friction allows for the grasped object to rotate between the fingers 

due to gravity.  This also allows objects to be picked up and placed onto a virtual 

surface with the object reacting under all the contact forces in a realistic and natural 

manner.  This is due to the Residual Force / Torque Algorithms acting only upon the 

residual force and torque within the object; the algorithms are agnostic to how the 

force / torque was generated (i.e. it doesn’t matter if the force / torque is from a haptic 

contact or a contact with another object).  These algorithms also show that it is 

possible to expand the Newton and Newton-Euler equations to work within the haptic 

space.  However, although the Residual Torque Algorithm also includes a term for 

simulating the coriolis force generated within a fast spinning object, due to the 

numerical inaccuracies inherent in a computer simulation, this term is best ignored.  

Chapter 6 also shows how a grasped virtual object can be picked up and placed onto a 

surface.  In essence, this allows the user to feel another object via the grasped object.  

This means that it becomes possible to create a volumetric “finger” for exploring the 

virtual world instead of the volume-less points that are used in many haptic rendering 

algorithms. 

 

When the Friction Cone Algorithm, the Residual Force / Torque Algorithms and the 

simulated torsional friction are used together, these algorithms combine to allow the 

intuitive multi-finger manipulation of virtual objects.  The experimental results show 

that the Friction Cone Algorithm is robust to noise and is drift free. The results of the 

psychophysical experiments run by McKnight show that the results achieved using the 

developed haptic system are interchangeable with previous real world results.  This 

shows that the developed algorithms, within the Phantom3 application, are able to 

provide a convincing, realistic simulation to the end user.  To further demonstrate the 

effectiveness of the system and algorithms, Chapter 8 presents a number of case 

histories.  Of particular note are case histories 1, 3 and 4.  Demonstrating the 
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intuitiveness of the system, case history 1 describes how the vast majority of people 

that used the system were very quickly able to successfully pick up a virtual ball and 

throw it into a virtual hoop.  Case history 3 demonstrates the realisticness of the 

developed system.  It describes how a senior haptics researcher was convinced that 

torsional friction was being displayed to the user via some external actuators even 

though none were present.  Case history 4 shows both the adaptability and acceptance 

of the Friction Cone Algorithm amongst the wider haptics community since it 

describes how the Friction Cone Algorithm has been integrated as the main friction 

implementation in an open source haptics library that is used by a large number of 

institutions in a wide variety of applications. 

 

The major contributions to the field of haptics presented in this thesis are the 

algorithms developed: The Friction Cone Algorithm and the Residual Force / Torque 

Algorithms.  Prior to the Friction Cone Algorithm, frictional forces would need to be 

superimposed on top of the output of the haptic rendering algorithm.  This would 

often require calculating the speed of movement along the surface to determine when 

to switch between stuck and slipping states.  This means dealing with the inherent 

problems of calculating velocity when travelling at low speeds.  With the 

development of the Friction Cone Algorithm this is no longer the case since a 

mechanism to simulate friction is inherently designed into the actual contact 

algorithm. 

 

The Residual Force / Torque Algorithms also provide a simple way of resolving the 

forces / torques within an object in a realistic manner.  These algorithms are agnostic 

to how the force / torque is generated and so are suitable for use whether the object is 

in contact with a haptic device or with another object. 

 

Finally, this thesis has shown how it is possible to bring together multiple, discrete 

haptic devices to create a physically realistic and intuitive multi-finger haptic enabled 

virtual environment. 
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