
Extending the Friction Cone Algorithm for Arbitrary  

Polygon Based Haptic Objects 
 

 

N. Melder  W. S. Harwin 

 

Department of Cybernetics, 

School of Systems Engineering, 

University of Reading, 

Reading, RG6 6AY 

United Kingdom 

 

Email: N.Melder@rdg.ac.uk  W.S.Harwin@rdg.ac.uk 

 
 

Abstract 

 
Most haptic environments are based on single point 

interactions whereas in practice, object manipulation 

requires multiple contact points between the object, 

fingers, thumb and palm.  The Friction Cone Algorithm 

was developed specifically to work well in a multi-finger 

haptic environment where object manipulation would 

occur. However, the Friction Cone Algorithm has two 

shortcomings when applied to polygon meshes: there is 

no means of transitioning polygon boundaries or feeling 

non-convex edges.  In order to overcome these 

deficiencies, Face Directed Connection Graphs have been 

developed as well as a robust method for applying friction 

to non-convex edges.  Both these extensions are described 

herein, as well as the implementation issues associated 

with them.  

 

1. Introduction 

 
Physics simulation in haptic environments requires that 

manipulated objects have a number of physical properties 

as in the real world.  These include mass and inertia for 

direct object manipulation as well as properties such as 

surface texture and frictional characteristics.  Work done 

by the authors has led to techniques to allow for the 

translation and rotation of multi-contacted objects [1] 

where mass and inertia are modelled, as well as means for 

modelling friction [2].  The Friction Cone Algorithm that 

was developed is a computationally simple means of 

modelling friction in haptic rendering applications, 

however, it suffers from two drawbacks, namely that it 

had no means of transitioning polygon boundaries or 

feeling non-convex edges.  A solution to this problem is 

to use Face Directed Connection Graphs to store 

information about which polygons are directly attached to 

the currently touched polygon. 

Successful implementation of a physics simulation 

requires: 

• the identification of collisions. 

• an estimation of external forces resulting from 

the collisions (including frictional forces). 

• an appropriate response to the residual forces. 

 

There are many collision detection algorithms and each 

tends to have certain advantages in different situations. In 

haptic program design the deciding factor in choosing the 

best collision algorithm is always the speed of calculation 

to determine whether a collision has occurred as this 

information is computed within the inner, haptic (high 

speed) loop. Two popular collision algorithms are 

OBBTree[3], and H-Collide[4] although the information 

returned from a polygon/point collision algorithm is all 

that is required for modelling friction via the friction cone 

algorithm. 

Concerning collisions involving a haptic device, once a 

collision has been identified then the appropriate forces 

must be calculated. A popular method that avoids object 

push through is described by Zilles and Salisbury [5] 

where two points are used to track the position and 

response of a haptic device when in contact with a 

surface. The haptic interface point is used to describe the 

endpoint location of the physical haptic interface as 

sensed by the encoders. A second conceptual point, the 

god-object, is used to track the history of the contact by 

locating the position on a surface polygon where forces 

should be directed. Conceptually this god-object slides 

along the surface polygons such that the distance to the 

haptic interaction point is always minimised. A notional 

spring is then used to compute the force that is to be 

applied to the haptic interface point such that the person’s 



finger is pushed towards the god-object. While the haptic 

interface is in virtual free space the haptic interface point 

and the god-object are collocated. This approach will give 

the normal force to the most appropriate surface on the 

object that has been touched. Lateral friction forces are 

then usually superimposed onto this normal force based 

on the detected velocity of slip. 

Classical friction models typically have the response as 

shown in figure 1. Additional characteristics are also evi-

dent that are not shown in the figure. These include stick-

slip motions where a limit cycle occurs at low velocities, 

presliding displacement where, before breakaway, the 

friction appears as a stiff spring, and frictional lag which 

is responsible for a delay between the velocity and 

friction variables. 
The friction cone method for determining friction [2], 

can be used to model the classical friction model. 

 

Figure 1: Friction Force vs Velocity 
 

2. The Friction Cone Algorithm 
 

A simple adjustment to the god-object algorithm 

allows us a better technique to manage friction. A friction 

cone can be arranged at the haptic interaction point, 

oriented in the direction of the normal of the contacted 

surface (see figures 2 and 3). The intersection of this cone 

with a planar surface on an object (a polygon) will define 

a friction circle since the surface is normal to the cone [2]. 

Whereas in Zilles' paper, as the haptic interface point 

moves so does the god-object, the approach used here 

only moves the god-object if the god-object lies outside 

the circle of friction. To calculate the size of the friction 

circle we use the depth of penetration of the haptic 

interface point in relation to the surface as an indication of 

force and the coefficient of friction (µ) that has been 
previously assigned to the penetrated polygon. i.e. radius 

of friction circle = µ * depth. Since the coefficient of 
friction remains constant the size of the friction circle is 

proportional to the depth of the penetration. It is possible 

to have different frictional properties for different objects 

simply by having a different coefficient of friction 

assigned to it so, for example, a surface has a low 

frictional coefficient then, for a given penetration depth, it 

will have a smaller friction circle. 

 

 

Figure 2: God-object inside friction cone remains 
unchanged 

 

 

Figure 3: God-object moves to edge of friction cone 
– note the surface polygon is omitted for clarity 

 

 The Friction Cone Algorithm is composed of the 

following steps and is active whilst the haptic interface 

point is inside the surface. It assumes that the god-object 

(GO) has already been placed and now needs updating. 

 

1. First, calculate depth of penetration d of the 

haptic interface point (HIP) below the surface of 

the polygon.  ie. d = (HIP - GO) • n . 

Stribeck effect 

Coulomb friction 

Viscous friction 

Negative limit  
of static friction 

Positive limit of 
static friction

Velocity 

F
ri
c
ti
o
n
 f
o
rc
e
 

θ Surface point (SP) 

god-object (GO) 

tan -1 µ  
n 
(surface normal) HIP 

move 

HIP 

tan -1 µ 

surface polygon 

Surface point (SP) 

god-object (GO) 



2. Hence, calculate the location of the surface point 

(SP).  The surface point is the defined as the 

minimised distance between the HIP and the 

contacted surface.  ie. SP = HIP + dn . 

3. A circle can then be considered as the 

intersection of the friction cone with the surface 

polygon.  The radius of this friction cone circle is 

given by R = dµ (where µ is the appropriate 
friction coefficient for the surface). 

4. The distance between the surface point (SP) and 

the current god-object (GO) is then given by  

r =  GO – SP .  The next stage is to compare 

this distance to the radius of the friction circle 

and update the god-object if necessary to the 

edge of the circle. 

5. If the god-object is outside the friction circle 

then update the god-object position to be on the 

perimeter of the friction circle.  ie.  

 Otherwise, leave the god-object in place. 

6. The response force can now be calculated based 

upon the vector from the HIP to the god-object 

and will be proportional to the surface stiffness. 

 

Thus when the GO is outside the friction cone it will 

‘jump’ to the closest point on the circumference of the 

friction circle and provides the equivalent to static 

friction. It is relatively straightforward to modify this 

algorithm to model both dynamic (coulomb) and static 

friction. It is necessary to note which of the two states 

(static or dynamic) an individual contact point is 

occupying, it will either be slipping on the surface, in 

which case the state is ‘slipping’ and the coefficient of 

dynamic friction is used in calculating the friction circle 

radius (µd), or it is ‘not slipping’ in which case the 

coefficient of static friction (µs) is used in calculations. 

Figure 4 gives a state transition diagram for these two 

states. Transition between these two states is controlled 

by a comparison between the angle at the HIP between 

the god object and the surface point (θ). 
 

 

Figure 4: State transitions for dynamic (coloumb) 
and static friction conditions 

3. Object Manipulation 
 

 Where an object needs to be handled with a multi-

finger grasp, it is now relatively simple to use the friction 

cone algorithm for each point of contact between a finger 

and the object.  The strength of this algorithm is that now 

a sum of forces/torques on the object can be easily 

calculated and this residual force/torque used to calculate 

the object acceleration and hence, by integration, its 

velocity and position/angular velocity and orientation.  

This then allows arbitrary grasps to be made on an object 

and the stability of the grasp determined by the friction 

cone algorithm.  Details of these calculations are given in 

[1]. 

 

4. Arbitrary Shaped Objects using Face 

Directed Connection Graphs 
 

 Previous haptic surface rendering algorithms transition 

polygon boundaries by determining where the HIP is in 

relation to the surface polygons, edges and vertices [5][6]. 

However, in these implementations it is always possible 

to determine the location of the HIP from the location of 

the god-object and vice-versa.  Since the friction cone 

algorithm does not have this property it is necessary to 

use a novel approach to boundary crossing.   

Face Directed Connection Graphs store information 

about how faces are attached to each other ie. for any 

given face, it is possible to quickly determine all the 

connecting faces.  Using a Face Directed Connection 

Graph and by examining the position of the god-object as 

it moves along a surface, it is possible to determine when 

the god-object crosses a plane defined by a connected 

polygon’s plane equation.  This is done by pre-computing 

and storing the Voronoi like regions [7] associated with 

the mesh in the Face Directed Connection Graph and 

determining when the god-object has traversed from one 

region to another. 

 Figure 5 shows the Face Directed Connection Graph 

(FDCG) for a simple polygonal cube made up of six 

faces.  By storing the D value (perpendicular distance 

from the plane containing the polygon to the object frame 

origin) for each face in the face structure (effectively 

turning it into a plane since each face also stores its 

normal vector) and by incorporating the vertices that are 

shared between the faces it is possible to use FDCGs in a 

god-object based system [3] to simplify the detection of 

edge crossing.  Since the vertex data of the connected 

faces is stored in the graph, finding the equation of any 

polygon edge is a simple matter. It can also be seen that 

each loop of the graph can be made to contain the same 

vertex number.  Conversely, given three faces that are 

connected together (ie. a corner) it is easy to see which 

vertex they all share.  FDCGs can be pre-computed 

directly from the mesh data where the normal and D value 

for each face can be easily calculated. 

  
SLIP 

 

use µd 

NON- 

SLIP 

use µs 

θ  < tan -1 µd 

θ  > tan -1 µs 

θ  > tan -1 µd 

 

GOnew = SP + R. 
(GO - SP) 

r 



 

Figure 5: A polygon cube and its associated face  
directed connection graph 

 

The FDCG is comprised of nodes, connections and 

corners where a node is equivalent to a face, a connection 

is equivalent to the edge between two connected faces and 

a corner is equivalent to a vertex.   

 

The node contains the following information:  

FacePlane - the normal of this face 

Connections - array of connections to this node 

 

The connection contains the following: 

SharedVertex[2] - the two shared vertices 

Nodes[2] - the two connected node 

EdgeVector - the normalised vector from 

SharedVertex[0] to SharedVertex[1] 

ConType - connection type (is either convex, 

concave or coplanar) 

VoronoiPlane[2] - see below for explanation 

EndPlane[2] - see below for explanation 

 

The corner contains the following: 

Vertex - the 3D point in space 

Connections - array of connections that share this 

corner 

 

The Voronoi planes in the connection are associated 

with the two connected nodes such that VoronoiPlane[0] 

is the Voronoi plane for Node[0] and VoronoiPlane[1] is 

the Voronoi plane for Node[1].  The Voronoi plane is 

simply a plane that passes through the two, shared 

vertices with a normal perpendicular to the normal of the 

associated node. 

 

Figure 6: Voronoi planes around an Edge 
 

The Voronoi planes are calculated as follows: 

 
vertex1 = connection->SharedVertex[0]; 

vertex2 = connection->SharedVertex[1]; 

vertex3 = Node[0]->faceNormal + vertex2; 

 

vector1 = vertex1 - vertex2; 

vector2 = vertex1 - vertex3; 

 

normal  = cross(vector1, vector2); 

 

voronoiFaceNormal[0] = Normalize(vNormal); 

voronoiD[0] = -dot(vertex1, vNormal); 

 

Similarly, the end planes are associated with the two 

shared vertices.  Each of the shared vertices lie on an end 

plane and the normal is either the EdgeVector or the 

negative EdgeVector of the connection. 

When computing the Voronoi and end planes, it is 

important to ensure that a consistent winding is used in 

the mesh data structure and that this is translated into the 

connections in the FDCG otherwise the direction of the 

computed normals for the Voronoi planes may be 

incorrect leading to unpredictable transitions between the 

afflicted polygons. 

If data duplication is not desired and both the visual 

and haptic mesh are identical, it is possible to easily 

modify the data structures required for graphical 

rendering to include all the necessary components of the 

FDCG. 

 

1 

6 

3 2 

5 

4 
v1 

v1 
v1 v4 v4 

v4 

v2 

v2 
v2 

v8 

v8 

v8 

v3 

v3 

v3 

v5 v5 

v5 

v6 

v6 

v6 
v7 v7 

v7 

v1 

v2 

v3 

v4 

v5 

v6 

v7 

v8 

F1 = Top face 

F2 = Bottom face 
F3 = Right face 

F4 = Left face 

F5 = Front face 

F6 = Back face 

Face 2 

Face 1 

= Face normal  = Voronoi Plane normal 

= Voronoi Region associated with the polygon 

    faces 



5. Crossing polygon boundaries 
 

The following state diagram shows the manner in 

which the god-object can transition over the surface. 

 

 
Figure 7: State transition diagram of how the god-
object moves across the surface of an object 

 

In order to determine whether a plane has been 

crossed, it is necessary to store the previous location of 

the traversing point.  The distance to the plane is then 

calculated with the current location and the previous 

location and if there is a change in sign then a plane has 

been crossed.  ie. 

 
CurrDist = (CurrPos dot PlaneNormal) + PlaneD 

OldDist  = (OldPos  dot PlaneNormal) + PlaneD 

 

If (CurrDist * OldDist < 0) then plane has  

 been crossed 

 

where dot performs a dot product on the two vectors. 

Sections 5a to 5g give the transitions required for figure 7.  

Figure 7 excludes some transitions (such as vertex to free 

space and vertex to face) because these state transitions 

should never occur.  Instead, an intermediate transition 

should occur ie. in order to move from a vertex to free 

space, a vertex to edge transition followed by an edge to 

face transition, followed by a face to free space transition 

should occur.  Section 7 Implementation Issues details 

this further. 

 

5a. Free space to Face 
 

This is determined by the collision detection algorithm 

and will define the initial active face. 

 

5b. Face to Free space 
 

 A face to free space transition can be determined by 

the distance of the haptic interaction point (HIP) to the 

face plane; if the distance is positive, then the HIP has 

transitioned out of the plane and is thus in free space. 

 

5c. Face to Edge 
 

 

Figure 8: God-object crossing from a  
face to an edge 

 

Once the god-object has been set, it is necessary to 

determine whether the god-object has moved out of the 

Voronoi region associated with the face.  This can be 

achieved by comparing the distance of the old god-object 

to the Voronoi planes stored in the connections that are 

attached to the currently active node.  If there is a change 

in sign, then that connection has been transitioned and the 

corresponding edge is made active (see section 6 for using 

the friction cone algorithm on edges).  In essence, the 

god-object has moved out of the face Voronoi region into 

an edge Voronoi region. 

The god-object is then repositioned on the edge where 

the transition occurred. 

 

5d. Edge to Face 
 

 

Figure 9: HIP entering a shaded region in this non-
convex example causes an edge to face  

transition to occur 
 

F 

FS 

E V 

FS = Free-space  F = Face  E = Edge  V = Vertex 

= God-Object 
= HIP when edge should be active 

= HIP when face should be active 

= Face normal 
= Area where face  

   should be active 

GO on Polygon 1 GO crosses plane that 

Polygon 2 lies on 

= God-object (GO)  = Old God-object position 

P2 

P1 

= Voronoi Region associated with polygon 1 

= Voronoi Region associated with polygon 2 

P2 

P1 



 Edge to face transitions need to be determined every 

haptic update since it is based upon the position of the 

haptic interaction point (HIP) and not the god-object. 

 An edge to face transition will occur when the HIP 

moves into a face Voronoi region, at which point the 

corresponding node is made active.  However, if the 

current edge is convex, it may be possible for the HIP to 

be behind both Voronoi planes stored in the connection.  

In this case, the face plane that the HIP is closest to is 

made active.  

 The god-object does not need to be repositioned. 

 

5e. Edge to Free space 
 

 

Figure 10: Transitioning from a convex  
edge into free space 

 

Figure 10 shows the position of the haptic interaction 

point and the god-object when the edge is first made 

active (ie. the edge has been made active but no 

transitions have yet been determined).  Edge to free space 

transitions occur only if the edge is acute and convex and 

can be tested by checking whether the edge is convex and 

that the HIP is in front of one connected face plane and 

behind the other face plane.  Although it appears possible 

that the HIP could be in front of both face planes at the 

same time, this will never be possible since the HIP must 

have been behind one of the face planes before it made a 

face to edge transition (otherwise a face to free space 

transition would have occurred). 

 

5f. Edge to Vertex 
 

An edge to vertex transition is defined as when the 

god-object moves off the end of the edge (ie. past one of 

the shared vertices), but not onto a face.  Determining if 

the god-object is in front of either of the associated end 

planes tests this transition type.  If it is, then the 

corresponding vertex is made active and the god-object is 

repositioned at the active vertex.  

 

5g. Vertex to Edge 
 

This transition will occur if the HIP moves into the 

edge Voronoi region, ie. it is behind both face planes that 

are stored in a connection connected to this corner. 

 

6. The Friction Cone Algorithm when on an 

Edge 
 

A slight modification to the friction cone algorithm is 

required in order to allow it to work on an edge.  Whereas 

in the face case, the surface point is defined as SP = HIP 

+ dn (see above), in the case of an edge there is no normal 

to use!  The equations shown below give a point on the 

edge that is perpendicular to the HIP so this is used to 

define the surface point instead. 

 

 

Figure 11: Calculating the surface point  
when on an edge 

 

1

b

b

=

= −

 =  
 
= +

= −

2 1

1

Ev V -V

w HIP V

w Ev

Ev Ev

SP V Ev

HipToEdge SP HIP

�

�

 

 

7. Implementation Issues 
 

 Implementing the algorithms as described may cause 

undesirable effects while transitioning coplanar and 

convex polygon boundaries since the god-object is always 

placed on the edge during polygon-edge-polygon 

movement.  This can be easily remedied by recursively 

changing the state (ie. polygon, edge, vertex active) until 

the god-object does not need to be moved.  This requires 

that the original god-object is not updated until the 

proposed god-object comes to rest.  By implementing the 

algorithms in this way, coplanar polygons will always feel 

smooth, otherwise they feel as though they have a 'sticky' 

ridge where the polygons are joined.  Similarly, convex 

polygon crossings feel more realistic instead of having a 

'sticky' edge. The disadvantage of this recursion is that the 

= God-Object attached to edge 

= Haptic Interaction Point 

= Face normal 

= Spring that force 

   is directed along 

w 

V1 SP 

Ev 

HIP 

V2 

V1, V2 = Vertices defining the edge 

HIP = Haptic Interaction Point 

Ev = Edge vector as defined in Section 4 

SP = Surface Point 

 



code is not deterministic, however, in practice, the 

computational burden of this recursion is low. 

  The advantages of using Voronoi regions to determine 

transitions are two fold: precision errors are no longer 

problematic and the small plane problem is removed.  

Precision errors occur when the god-object isn't placed 

exactly on the surface of a polygon / edge (ie. it is either 

above or below the surface).  Previous edge transitioning 

methods that were developed exhibited problems when 

this was the case which would result in the god-object 

being incorrectly placed on edges or surfaces.  This 

caused the god-object to become fixed on an edge or be 

attached onto the wrong side of the plane of a polygon (ie. 

on the portion of the plane that is in free space).   The 

described methods don't suffer from these problems since 

the god-object is explicitly placed every time a transition 

occurs.   

The small plane problem describes the situation where 

the god-object moves across two edges.  This could 

potentially result in the god-object being attached to the 

portion of the plane that is in free space.  Using Voronoi 

regions, this problem does not exist since the transition 

occurs when the god-object moves outside of the Voronoi 

region of the active polygon, edge or vertex. 

 Haptic resolution/update errors manifest themselves 

whenever a transition occurs that has not been defined in 

the transition state diagram (figure 7).  They occur 

because the resolution/update of the device allows for a 

jump between two normally impossible states (eg. god-

object transitions from a vertex to free space, instead of 

from a vertex to free space via an edge and a plane as 

would happen in a continuous system) and are easily 

remedied by the addition of these extra state transitions.  

The updated state transition diagram (figure 12) is shown 

below where the shaded lines are the additional/modified 

state transitions. 

 

 

Figure 12: State transition diagram with the 
erroneous states added 

 

For transitions into free-space it is necessary to 

examine the position of the HIP against the face planes; if 

the HIP is behind no faces then it is in free space.  This 

allows for vertex to free space and for concave edge to 

free space transitions at minimal cost. 

  Vertex to Face transitions must occur when the HIP 

moves directly from a corner Voronoi region directly into 

a face Voronoi region.  To achieve this, it is necessary to 

first determine which nodes share the corner and then test 

if the HIP lies inside a face Voronoi region.  It is possible 

to store the connected nodes in the FDCG (in the corner 

structure) for this test, however, since this transition 

occurs rarely, calculating the connected nodes at run time 

adds little processing cost to the state.  This can be further 

optimised by caching the connected nodes the first time 

this state is entered. 

The website http://www.cyber.rdg.ac.uk/ISRG/haptics/ 

contains MPEGs of multi-finger haptic manipulation of a 

sphere and a cube using the algorithms described herein 

and in [1][2].  

 

8. Conclusions 
 

 The friction cone algorithm and the associated face 

transition algorithms provide a mechanism to model 

arbitrary rigid bodies in a haptic environment that allows 

both the ability to model friction and subsequently to lift 

and manipulate the body in an appropriate physics based 

world (for example, gravity can be set to values 

appropriate to the earth, the moon, or zero).  The 

algorithms are efficient since only the features (faces or 

edges) connected to the active polygon / edge / vertex are 

used and so the polygon count of the model being 

rendered is not a factor in the processing time required. 

 It is also possible to apply the algorithms described to 

parametric surfaces with minimal modification since the 

friction cone algorithm returns a direction and magnitude 

of the force required for display.  The only change that is 

required is the determination of the surface normal that is 

used.  This has been tested against simple parametric 

objects (spheres, cylinders, cubes and planes) although 

complex parametric objects (made up of multiple 

surfaces) have not currently been investigated. 

These algorithms can also be used with deformable 

meshes provided that the appropriate Voronoi planes are 

updated when the object deforms. 

 

9. Acknowledgements 
 

 The authors are pleased to acknowledge support from 

the EPSRC project “Haptic cues in multi-point 

interactions with virtual and remote objects” 

(GR/R10455/01) for this work. 

 

F 

FS 

E V 

FS = Free-space  F = Face  E = Edge  V = Vertex 



10. References 

 
[1] N. Melder, W. S. Harwin and P. M. Sharkey, 

Translation and Rotation of  Multi-Point Contacted 

Virtual Objects, Proceedings of Eurohaptics 

Conference, 2003 

[2] W. S. Harwin and N. Melder, Improved Haptic 

Rendering for Multi-Finger Manipulation Using 

Friction Cone based God-Objects, Proceedings of 

Eurohaptics Conference, 2002 

[3] S. Gottschalk, M. C. Lin and D. Manocha, 

OBBTree: A Hierarchical Structure for Rapid 

Interface Detection,  Proceedings of ACM Siggraph, 

1996  

[4] A. Gregory, M. Lin, S. Gottschalk and R. Taylor, H. 

Collide: A Framework for Fast and Accurate Colli-

sion Detection for Haptic Interactions, Proceedings 

of IEEE Virtual Reality Conference, 1999  

 

 
[5] C. B. Zilles and J. K. Salisbury, A Constraint-based 

God-object Method for Haptic Display, Proceedings 

of International Conference on Intelligent Robots 

and Systems, 1995. 

[6] C. Ho, C. Basdogan, M. A. Srinivasan, Efficient 

Point-Based Rendering Techniques for Haptic 

Display of Virtual Objects, Presence 8(5) Oct 1999 

pp 477-491 

[7] A. Schinner, Features and Voronoi regions, Last 

known web address: http://octopus.th.physik.uni-

frankfurt.de/ ~schinner/algorithm/node13.html, May 

1995 

 


